Ростелеком

Что такое тиристор и как он работает? Тиристор принцип работы

Появление четырехслойных p-n-p-n полупроводниковых элементов совершило настоящий прорыв в силовой электронике. Такие устройства получили название «тиристоров». Кремниевые управляемые вентили являются наиболее распространенным семейством тиристоров.

Данный вид полупроводниковых приборов имеет следующую структуру:

Как видим из структурной схемы тиристор имеет три вывода – катод, управляющий электрод и анод. Подключению к силовым цепям подлежат анод и катод, а управляющий электрод подключается к системе управления (слаботочные сети) для управляемого открытия тиристора.

На принципиальных схемах тиристор имеет такое обозначение:

Вольт-амперная характеристика показана ниже:

Давайте подробнее рассмотрим эту характеристику.

Обратная ветвь характеристики

В третьем квадранте характеристики диодов и тиристоров равны. Если к аноду приложить отрицательный потенциал относительно катода, то к J 1 и J 3 прикладывается обратное напряжение, а к J 2 — прямое, что вызовет протекание тока обратного (он очень мал, как правило несколько миллиампер). Когда же это напряжение увеличится до так называемого напряжения пробоя, произойдет лавинное нарастание тока между J 1 и J 3 . При этом, если данный ток не будет ограничен, то произойдет пробой перехода с последующим выходом из строя тиристора. При обратных же напряжениях, которые не превышают напряжения пробоя, тиристор будет вести себя как резистор с большим сопротивлением.

Зона низкой проводимости

В данной зоне все наоборот. Потенциал катода будет отрицательный по отношению к потенциалу анода. Поэтому к J 1 и J 3 будет приложено прямое, а к J 2 – обратное напряжение. Результатом чего станет весьма малый анодный ток.

Зона высокой проводимости

Если напряжение на участке анод – катод достигнет значения, так называемого напряжением переключения, то произойдет лавинный пробой перехода J 2 и тиристор будет переведен в состояние высокой проводимости. При этом U a снизится от нескольких сотен до 1 — 2 вольт. Оно будет зависеть от типа тиристора. В зоне высокой проводимости ток, протекающий через анод, будет зависеть от нагрузки внешней элемента, что дает возможность рассматривать его в этой зоне как замкнутый ключ.

Если пропустить ток через управляющий электрод, то напряжение включения тиристора уменьшится. Оно напрямую зависит от тока управляющего электрода и при достаточно большом его значении практически равно нулю. При выборе тиристора для работы в схеме, то его подбирают таким образом, чтоб напряжения обратное и прямое не превышали паспортных значений напряжений пробоя и переключения. Если эти условия выполнить трудно, или имеется большой разброс в параметрах элементов (например необходим тиристор на 6300 В, а его ближайшие значения 1200 В), то иногда применяют или включение элементов.

В нужный момент времени с помощью подачи импульса на управляющий электрод можно перевести тиристор с закрытого состояния в зону высокой проводимости. Ток УЭ, как правило, должен быть выше минимального тока открытия и он составляет порядка 20-200 мА.

Когда анодный ток достигнет определенного значения, при котором запирания тиристора невозможно (ток переключения), управляющий импульс может быть снят. Теперь тиристор сможет перейти обратно в закрытое состояние только при уменьшении тока ниже, чем ток удержания, или прикладыванием к нему напряжения обратной полярности.

Видео работы и графики переходных процессов

Тиристор – это полупроводниковый ключ, конструкция которого представляет собой четыре слоя. Они обладают способностью переходить из одного состояния в другое – из закрытого в открытое и наоборот.

Информация, представленная в данной статье, поможет дать исчерпывающий ответ на вопрос об этом аппарате.

Принцип функционирования тиристора

В специализированной литературе этот прибор также носит название однооперационного тиристора. Это название обусловлено тем, что устройство является не полностью управляемым . Другими словами, при получении сигнала от управляющего объекта он может только перейти в режим включенного состояния. Для того чтобы выключить прибор, человеку придется выполнить дополнительные действия, которые и приведут к падению уровня напряжения до нулевой отметки.

Работа этого прибора основывается на использовании силового электрического поля. Для его переключения из одного состояния в другое применяется технология управления, передающая определенные сигналы. При этом ток по тиристору может двигаться только в одном направлении. В выключенном состоянии этот прибор обладает способностью выдерживать как прямой, так и обратное напряжение.

Способы включения и выключения тиристора

Переход в рабочее состояние стандартного этого типа аппарата осуществляет путем поучения импульса токового напряжения в определенной полярности. На скорость включения и на то, как он впоследствии будет работать, влияют следующие факторы:

Выключение тиристора может быть осуществлено некоторыми способами:

  1. Естественное выключение. В технической литературе также встречается такое понятие, как естественная коммутация – оно аналогично естественному выключению.
  2. Принудительное выключение (принудительная коммутация).

Естественное выключение этого аппарата осуществляется в процессе его функционирования в цепях с переменным током, когда происходит понижение уровня тока до нулевой отметки.

Принудительное выключение включает в себя большое количество самых разнообразных способов. Самым распространенным из них является следующий метод.

Конденсатор, обозначаемый латинской буквой C, соединяется с ключом. Он должен обозначаться маркеровкой S. При этом конденсатор перед замыканием должен быть заряжен.

Основные типы тиристоров

В настоящее время существует немалое количество тиристоров, которые различаются между собой своими техническими характеристиками – скоростью функционирования, способами и процессами управления, направлениями тока при нахождении в проводящем состоянии и др.

Наиболее распространенные типы

  1. Тиристор-диод. Такой прибор аналогичен устройству, которое имеет встречно-параллельный диод во включенном режиме.
  2. Диодный тиристор. Другое название – динистор. Отличительной характеристикой этого устройства является то, что переход в проводящий режим осуществляется в момент, когда уровень тока превышен.
  3. Запираемый тиристор.
  4. Симметричный. Он также носит название симистора. Конструкция этого прибора аналогична двум устройствам со встречно-параллельным диодами при нахождении в режиме работы.
  5. Быстродействующий или инверторный. Этот тип устройства обладает способностью переходить в нерабочее состояние за рекордно короткое время – от 5 до 50 микросекунд.
  6. Оптотиристор. Его работа осуществляется при помощи светового потока.
  7. Тиристор под полевым управлением по ведущему электроду.

Обеспечение защиты

Тиристоры входят в перечень приборов, которые критично влияют на изменение скорости увеличения прямого тока. Как и для диодов, так и для тиристоров характерен процесс протекания обратного тока восстановления. Резкое изменение его скорости и падение до нулевой отметки приводит к повышенному риску возникновения перенапряжения.

Кроме того, перенапряжение в конструкции этого прибора может возникать вследствие полного исчезновении напряжения в разнообразных составных частях системы, например, в малых индуктивностях монтажа.

По вышеуказанным причинам в подавляющем большинстве случаев для обеспечения надежной защиты этих приборов применяют разнообразные схемы ЦФТП. Данные схемы при нахождении в динамическом режиме помогают защищать устройство от возникновения недопустимых значений напряжения.

Надежным средством защиты также является применение варистора . Это устройство подключается к местам вывода индуктивной нагрузки.

В самом общем виде применение такого прибора, как тиристор, можно разделить на следующие группы:

Ограничения тиристора

При работе с любым типом этого прибора следует соблюдать определенные правила техники безопасности, а также помнить о некоторых необходимых ограничениях.

Например, в случае с индуктивной нагрузкой при функционировании такой разновидности прибора, как симистор. В данной ситуации ограничения касаются скорости изменения уровня напряжения между двумя основными элементами – его анодами и рабочим током. Для ограничения влияния тока и перегрузки применяется RC-цепочка .

В переключательных схемах часто используется тиристор, принцип работы которого напоминает электронный ключ. Он представляет собой полупроводниковый прибор, имеющий три или несколько взаимодействующих выпрямляющих переходов. Однако тиристор не способен перейти в состояние закрытого типа, поэтому его называют ключом, который является не полностью управляемым.

Устройство и виды полупроводниковых приборов

Прежде чем рассматривать принцип работы тиристоров в цепях, необходимо разобраться с тем, как они устроены, какие виды существуют. Состоят они из четырех последовательно соединенных слоев, которые имеют разный тип проводимости. С внешней стороны есть контакты - анод и катод. Приборы могут обладать двумя управляющими электродами, прикрепленными к внутренним слоям. Изменения состояния удается добиться за счет подачи сигнала непосредственно на проводник.

Различают два основных вида тиристоров:

  1. Динисторы представляют собой диодные полупроводниковые приборы. В данном случае открывание осуществляется посредством подачи высокого напряжения между контактами.
  2. Тринисторы - это триодные аналоги. Их удается открывать за счет воздействия управляющего тока на электрод.

Процесс запирания может производиться двумя способами. Первый из них подразумевает снижение электрического тока ниже уровня удержания. Вариант применим для всех видов тиристоров. Второй способ заключается в нагнетании запирающего напряжения непосредственно на управляющий контакт. Он используется только для тринисторов запираемого типа.

Возможность обратной проводимости

Рассматривая принцип работы тиристора, следует понимать, что элементы могут быть классифицированы по обратному напряжению.

Всего существует четыре варианта изделий:

  1. Обратно-проводящие приборы обладают небольшим обратным напряжением. Оно составляет всего несколько вольт.
  2. Элементы, не проводящие напряжение в обратном направлении в закрытом состоянии.
  3. Симисторы представляют собой симметричные приборы, которые коммутируют электрические токи в том или ином направлении.
  4. Изделия с ненормированным напряжением обратного направления.

Используя симисторы, необходимо помнить, что они функционируют симметрично лишь на первый взгляд. При подаче отрицательного (на анод) и положительного (на управляющий электрод) напряжения они не способны открываться, а в некоторых случаях могут выходить из строя.

В электронике симисторы относят к управляемым тиристорам, принцип работы которых заключается в коммутации цепей переменного тока. При проектировании таких схем, необходимо изучать документацию конкретного изделия, чтобы определить, какие сигналы допустимы. Отдельные виды симисторов могут иметь некоторые ограничения.

Работа в цепи постоянного тока

Если объяснять принцип работы тиристора простым языком, то он заключается во включении полупроводникового прибора посредством подачи импульса электрического тока непосредственно в цепь управления положительной полярности. На продолжительность переходного процесса существенно влияет характер производимой нагрузки, а также другие факторы:

  • скорость и амплитуда созданного импульса;
  • температура полупроводниковой конструкции;
  • передаваемое напряжение;
  • ток нагрузки.

В цепи с тиристором при увеличении прямого напряжения не должно фиксироваться завышенных значений скорости нарастания. В противном случае может происходить непреднамеренное включение прибора без подачи сигнала. Однако крутизна производимого импульса не должна быть низкой.

Выключение элементов может происходить естественным или принудительным образом. В первом случае коммутация в системах переменного тока осуществляется в момент падения электрического тока до минимума. Что касается вариантов принудительного выключения, то оно может быть весьма разнообразным:

  1. Подключение специализированной цепи с наличием заряженного конденсатора вызывает возникновение разряда на проводящий элемент. Встречный поток снижает ток до нуля, поэтому прибор выключается.
  2. Подключение контура, вызывающего колебательный разряд, позволяет пропустить электричество через тиристор на встречу прямому току. При достижении равновесия происходит выключение.
  3. Переходный процесс может вызываться при оказании комплексной нагрузки. При наличии определенных параметров возникает колебательный характер, подразумевающий изменение полярности.

Функционирование в цепи переменного тока

Теперь следует рассмотреть принцип работы тиристора в цепи, которая пропускает переменный ток. При его внедрении можно производить включение и отключение электрических сетей с активной нагрузкой, а также осуществлять изменение среднего и текущего значений тока путем регулировки подачи сигнала.

Не новость даже для чайников - принцип работы тиристора заключается в пропускании электричества в одном направлении, поэтому в цепях с переменным током осуществляется встречно-параллельное включение. Значения могут варьироваться путем изменения самого момента подачи на приборы открывающих сигналов. Углы регулируются за счет системы управления.

  1. Фазовый метод регулировки с принудительной коммутацией предполагает применение специальных узлов.
  2. Широтно-импульсное управление подразумевает отсутствие сигнала в закрытом состоянии и его наличие в открытом положении, когда к нагрузке приложено определенное напряжение.

Режим обратного запирания

Рассказывая о принципе работы триодного тиристора, нельзя не отметить, что оно может работать в разных режимах. При обратном запирании непосредственно к аноду полупроводника приложено отрицательное напряжение по отношению к катодному контакту. Переходы при таком варианте смещены в противоположном направлении.

Существуют факторы, ограничивающие применение подобного режима. Первый из них - это лавинный пробой, а второй - прокол обедненной области. Это объясняется тем, что существенная часть напряжения снижается на одном из переходов. Возникает их смыкание или происходит пробой.

Режим прямого запирания

Принцип работы тиристора в режиме прямого запирания предполагает обратное смещение одного из переходов. Противоположные слои сдвинуты в прямом направлении. Основная часть приложенного напряжения снижается на единичном переходе. Через остальные слои в соприкасающиеся области инжектируются носители, позволяющие уменьшить сопротивление на проводящем элементе. Происходит увеличение проходящего тока. Падение напряжения уменьшается.

Увеличение прямого напряжения приводит к медленному росту электрического тока. В таком режиме полупроводник считается запертым, что связано с повышенным сопротивлением единичного перехода. При некотором показателе напряжения процесс начинает приобретать лавинообразный характер. Прибор переходит во включенное состояние, в нем устанавливается электрический ток, который зависит от источника и сопротивления цепи.

Двухтранзисторная модель

Для объяснения устройства и принципа работы тиристора в режиме прямого запирания применяется двухтранзисторная модель. Данный полупроводниковый прибор можно рассматривать как два совмещенных транзистора с противоположными выводами. Переход в центре используется в качестве коллектора дырок и электронов, которые инжектируются определенными переходами.

Соотношения не изменяются при протекании токов в противоположном направлении. При повышении коэффициента в замкнутой петле происходит лавинообразный процесс, подразумевающий увеличение тока непосредственно через структуру. Электрический ток ограничен лишь сопротивлением наружной цепи.

Чем различаются динисторы и тринисторы

Принципиальных отличий между характеристиками и принципом работы тиристоров нельзя найти. Однако открытие динистора производится при наличии определенного напряжения между двумя основными выводами. Оно зависит от типа используемого устройства. В случае с тринистором напряжение открытия удается снизить принудительным образом. Это можно сделать, если подать импульс электрического тока необходимой величины непосредственно на управляющий электрод. Тринисторы получили наибольшее распространение среди приборов из категории тиристоров.

Основные характеристики

При выборе тиристоров обращают внимание на определенные параметры:

  1. Напряжение включения позволяет перевести полупроводниковый прибор в рабочее состояние.
  2. Временной интервал задержки запуска и остановки изделия.
  3. Уровень обратного тока при максимальном значении обратного напряжения.
  4. Показатель общей рассеивающей мощности.
  5. Прямое напряжение при предельном токе анода.
  6. Пиковый ток электрода, обеспечивающего управление.
  7. Обратное напряжение в закрытом состоянии.
  8. Максимальный открытый ток в открытом положении.

При выборе тиристора не следует забывать о предназначении прибора. На это непосредственное влияние оказывает временной интервал перехода в открытое или закрытое состояние. Как правило, период включения является более коротким, чем промежуток выключения.

Схемы с применением тиристоров

Тиристорные схемы подразделяются на четыре категории:

  1. Пороговые изделия используют возможности перехода полупроводников из одного положения в другое при наличии определенного напряжения. К таковым относятся генераторы колебаний и фазовые регуляторы нагрузки.
  2. Силовые ключи отличаются низкой мощностью. Ток рассеивается элементами в переключательных схемах в открытом состоянии. В закрытом положении электричество не пропускается.
  3. Коммутация постоянного напряжения вполне возможна при использовании приборов с большой мощностью. Есть несколько способов, позволяющих закрывать незапираемые элементы.
  4. Некоторые экспериментальные устройства работают с применением полупроводниковых приборов в переходных режимах, где имеются участки с отрицательным уровнем сопротивления.

В качестве заключения

Чаще всего рассказывают о принципах работы тиристоров для студентов специализированных училищ, которые готовят специалистов в области электротехники. Однако не помешает изучить информацию об устройстве и функционировании универсальных полупроводниковых приборов простым людям, проявляющим интерес к проектированию различных электрических схем.

Содержание:

Открытие свойств переходов полупроводников по праву можно назвать одним из важнейших в ХХ веке. В результате появились первые полупроводниковые приборы - диоды и транзисторы. А также схемы, в которых они нашли применение. Одной из таких схем является соединение двух биполярных транзисторов противоположных типов - p-n-p c n-p-n . Эта схема показана далее на изображении (б). Она иллюстрирует, что такое тиристор и принцип его действия. В ней присутствует положительная обратная связь. В результате каждый транзистор увеличивает усилительные свойства другого транзистора.

Транзисторный эквивалент

При этом любое изменение проводимости транзисторов в любом направлении лавинообразно нарастает и завершается одним из граничных состояний. Они либо заперты, либо отперты. Этот эффект называется триггерным. А по мере развития микроэлектроники оба транзистора объединили в 1958 году на одной подложке, обобщив одноименные переходы. В результате появился новый полупроводниковый прибор, названный тиристором. На взаимодействии двух транзисторов и зиждется принцип работы тиристора. В результате объединения переходов у него такое же количество выводов, как и у транзистора (а).

На схеме управляющий электрод - это база транзистора структуры n-p-n . Именно ток базы транзистора изменяет проводимость между его коллектором и эмиттером. Но управление может быть выполнено также и по базе p-n-p транзистора. Таково устройство тиристора. Выбор управляющего электрода определяют его особенности, в том числе выполняемые задачи. Например, в некоторых из них вообще не используются какие-либо управляющие сигналы. Поэтому, зачем же использовать управляющие электроды...

Динистор

Это задачи, где применяются двухэлектродные разновидности тиристоров - динисторы. В них присутствуют резисторы, соединенные с эмиттером и базой каждого транзистора. Далее на схеме это R1 и R3. Для каждого электронного прибора есть ограничения по величине приложенного напряжения. Поэтому до некоторой его величины упомянутые резисторы удерживают каждый из транзисторов в запертом состоянии. Но при дальнейшем увеличении напряжения через переходы коллектор–эмиттер появляются токи утечки.

Они подхватываются положительной обратной связью, и оба транзистора, то есть динистор, отпираются. Для желающих поэкспериментировать далее показано изображение со схемой и номиналами компонентов. Можно ее собрать и проверить рабочие свойства. Обратим внимание на резистор R2, отличающийся подбором нужного номинала. Он дополняет эффект утечки и, соответственно, напряжение срабатывания. Следовательно, динистор - это тиристор, принцип работы которого определен величиной питающего напряжения. Если оно относительно велико, он включится. Естественно интересно также узнать, как же его выключить.

Трудности выключения

С выключением тиристоров дело обстояло, как говорится, туго. По этой причине довольно длительное время виды тиристоров ограничивались только двумя выше упомянутыми структурами. До середины девяностых годов ХХ века применяются тиристоры только этих двух типов. Дело в том, что выключение тиристора может произойти лишь при запирании одного из транзисторов. Причем на определенное время. Оно определено скоростью исчезновения зарядов соответствующих отпертому переходу. Наиболее надежный способ «прибить» эти заряды - полностью отключить ток, протекающий через тиристор.

Большинство из них так и работают. Не на постоянном токе, а на выпрямленном, соответствующем напряжению без фильтрации. Оно изменяется от нуля до амплитудного значения, а затем вновь уменьшается до нуля. И так далее, соответственно частоте переменного напряжения, которое выпрямляется. В заданный момент между нулевыми значениями напряжения на управляющий электрод поступает сигнал, и тиристор отпирается. А при переходе напряжения через ноль вновь запирается.

Чтобы выключить его на постоянном напряжении и токе, при котором значение нуля отсутствует, необходим шунт, действующий определенное время. В простейшем варианте это либо кнопка, присоединенная к аноду и катоду, либо соединенная последовательно. Если прибор отперт, на нем присутствует остаточное напряжение. Нажатием кнопки оно обнуляется, и ток через него прекращается. Но если кнопка не содержит специального приспособления, и ее контакты разомкнутся, тиристор непременно снова включится.

Этим приспособлением должен быть конденсатор, подключаемый параллельно тиристору. Он ограничивает скорость нарастания напряжения на приборе. Этот параметр вызывает набольшее сожаление при использовании этих полупроводниковых приборов, поскольку понижается рабочая частота, с которой тиристор способен коммутировать нагрузку, и, соответственно, коммутируемая мощность. Происходит это явление из-за внутренних емкостей, характерных для каждой из моделей этих полупроводниковых приборов.

Конструкция любого полупроводникового прибора неизбежно образует группу конденсаторов. Чем быстрее нарастает напряжение, тем больше токи, их заряжающие. Причем они возникают во всех электродах. Если такой ток в управляющем электроде превысит некоторое пороговое значение, тиристор включится. Поэтому для всех моделей приводится параметр dU/dt.

  • Выключение тиристора, как результат перехода питающего напряжения через ноль, называется естественным. Остальные варианты выключения называются принудительными или искусственными.

Многообразие модельного ряда

Эти варианты выключения усложняют тиристорные коммутаторы и уменьшают их надежность. Но развитие тиристорного разнообразия получилось очень плодотворным.

В наше время освоено промышленное производство большого числа разновидностей тиристоров. Область их применения - не только мощные силовые цепи (в которых работают запираемый и диод-тиристор , симистор), но и цепи управления (динистор, оптотиристор). Тиристор на схеме изображается, как показано далее.

Среди них есть модели, у которых рабочие напряжения и токи самые большие среди всех полупроводниковых приборов. Поскольку промышленное электроснабжение немыслимо без трансформаторов, роль тиристоров в его дальнейшем развитии является основополагающей. Запираемые высокочастотные модели в инверторах обеспечивают формирование переменного напряжения. При этом его величина может достигать 10 кВ с частотой 10 килогерц при силе тока 10 кА. Габариты трансформаторов при этом уменьшаются в несколько раз.

Включение и выключение запираемого тиристора происходит исключительно от воздействия на управляющий электрод специальными сигналами. Полярность соответствует определенной структуре этого электронного прибора. Это одна из простейших разновидностей, именуемая как GTO. Кроме нее применяются более сложные запираемые тиристоры со встроенными управляющими структурами. Эти модели называются GCT, а также IGCT. Использование в этих структурах полевых транзисторов относит запираемые тиристоры к приборам семейства MCT.

Мы постарались сделать наш обзор информативным не только для начитанных посетителей нашего сайта, но также и для чайников. Теперь, когда мы ознакомились с тем, как работает тиристор, можно найти применение этим знаниям для практического использования. Например, в несложном ремонте бытовых электроприборов. Главное - увлекаясь работой, не забывайте о технике безопасности!

Данный прибор можно рассматривать и применять в качестве электронного выключателя или ключа, которые управляются с помощью нагрузки слабыми сигналами, а также могут переключаться из одного режима в другой. Общее количество современных тиристоров разделяется по способу управления и по степени проводимости, одно направление или два (такие приборы также называют симисторами).

Тиристоры также характеризуются нелинейной вольтамперной особенностью с наличием участка отрицательного дифференциального сопротивления. Эта особенность делает подобные приборы схожими с транзисторными ключами, но имеются между ними и различия. Так в переход из одного состояния в другое в цельной электрической цепи происходит путем лавинообразного скачка, а также методом внешнего воздействия на сам прибор. Последнее осуществляется двумя вариантами – токовым напряжением или воздействием света фототиристора.

Применение и типы тиристоров

Сфера применения данных приборов довольно разнообразна – это электронные ключи, современные системы CDI, механически управляемые выпрямители, диммеры или регуляторы мощности, а также инверторные преобразователи.

Как уже говорилось выше, подобные приборы разделяются на диодные и триодные. Первый тип также называют динисторами с двумя выводами, он разделяется на приборы, не имеющие возможность осуществлять проводимость в обратном направлении, на тип с проводимостью в обратном направлении и на симметричные приборы. Второй включает в себя триодные тиристоры с проводимостью в обратном направлении, приборы с отсутствием проводимости в обратном направлении, симметричные тиристоры, ассиметричные приборы и запираемые тиристоры.

Между ними, кроме количества выводов, нет существенных и принципиальных различий. Но, если в динисторе открытие происходит после достижения между анодом и катодом напряжения, зависящего от типа устройства, то в тиристоре имеющееся напряжение может быть в разы снижено или вовсе снято с помощью подачи токового импульса.

Существуют различия между триодными тиристорами и запираемыми приборами. Так у первого типа переключение в режим закрытого состояния происходит после снижения тока или после изменения полярности, а у запираемых устройств переход в открытое осуществляется путем воздействия тока на управляющий электрод.