С миру по нитке

Функциональная организация персонального компьютера. Функциональная организация компьютеров Функциональная и структурная организация компьютера кратко

Любой биологический объект (человек, животное, насекомое) в процессе своей жизнедеятельности должен адекватно реагировать на воздействия со стороны объектов окружающего его мира. Это возможно только при наличии у биологических объектов органов, реализующих необходимые функции работы с информацией (данными) (Рис. 18.1.).

Функции объекта, реализующего обработку данных

Рис. 18.1.


  1. Ввод (приём) данных (информации0 от другого объекта;

  2. Хранение данных (информации);

  3. Обработка данных (информации);

  4. Вывод (передача) данных (информации) другому объекту.
Человек создал подобные себе устройства, но не в смысле внешнего вида, а в смысле реализации тех же функций, необходимых для работы с информацией.

18.1. Функции компьютера, как системы обработки данных

Рис. 18.1.1.

На рисунке 18.1.1. представлена схема антиблокировочной системы торможения (АСТ). Очевидно, что управление любым объектом основано на особенностях функционирования этого объекта управления. Управление состоит в том, что объект управления переводится в различные состояния с помощью установленной на компьютере программы управления. Смысл АСТ состоит в том, чтобы колесо автомобиля всегда вращалось. При блокировке колеса возникнет неуправляемое рулём движение автомобиля.

Водитель при торможении нажимает на педаль тормоза. Задача АСТ: не допустить блокировки колеса.

Первая функция (ввод) состоит в том, что аналоговые сигналы от датчика вращения колеса преобразуются в цифровые сигналы (коды) и вводятся в память компьютера. Вторая функция (хранение) состоит в том, что хранимые в памяти коды состояния колеса воспринимаются программой управления. Если код соответствует вращению колеса, система управления «молчит». Если код соответствует состоянию колеса «неподвижность», программа формирует код управления, который выдаётся (функция вывода) на ЦАП. Этот код преобразуется ЦАП в напряжение и воспринимается АСТ как управляющее воздействие «ослабить тормозное усилие». АСТ ослабляет тормозное усилие, и колесо начинает вращаться.

Анализ этой схемы показывает, что компьютер можно рассматривать, как устройство обработки данных, т.к. в этом устройстве реализуются все 4 функции. Однако необходимо отметить, что эти функции реализуются с помощью аппаратных и программных средств. Очевидно, что собственно задача управления электронным микроскопом реализована программой. Аппаратура играет вспомогательную роль. Именно по этой причине говорят об аппаратно- программных управляющих средствах.

На рисунке 18.1.2. представлено более сложное аппаратно-программное средство.



Рис. 18.1.2.

В данной схеме управления электронным микроскопом в контуре управления присутствует человек. Сигналы об исследуемом объекте преобразуются в коды, и выводятся на устройство отображения (дисплей). Человек, рассматривая изображение объекта, может управлять электронным микроскопом, выдавая ему команды: увеличить изображение (приблизить объектив микроскопа к объекту), уменьшить изображение, переместить объектив вправо и т.д. Команды человека преобразуются программой в управляющие коды, которые, в свою очередь, преобразуются ЦАП в сигналы различного напряжения. Сигналы воспринимаются органами управления электронным микроскопом, и он выполняет заданные пользователем команды.

Анализ двух рисунков показывает, что компьютер может функционировать без такого устройства, как дисплей. Дисплей можно рассматривать как устройство отображения, а также как устройство вывода информации. Ввод информации человеком осуществляется с помощью клавиатуры.

Функциональное устройство компьютера: аппаратное средство, реализующее конкретную функцию компьютера.

Магистрально-модульный принцип организации компьютера: все функциональные элементы компьютера соединяются друг с другом с помощью общей (системной) магистрали (шины) и обмениваются друг с другом данными через это функциональное устройство (Рис. 18.1.3.).

Состав системной магистрали:


    • шина данных;

    • шина адреса;

    • шина управления.


Рис. 18.1.3.

Мы уже рассматривали процесс исполнения программы. Процессор должен обратиться к ОП за очередной командой, затем процессор должен обратиться к ОП для выборки операндов и, наконец, процессор должен обратиться к ОП для записи результата выполнения операции над операндами. Если в процессе исполнения программы необходимо выполнить операции вводи или вывода, то только разработчик программы знает момент начала этих операций. Это значит, что в составе системы команд могут быть не только арифметические и логические команды, но и команды управления устройствами. Вывод: первичным источником обмена двух устройств между собой является процессор, который выполняет команду программы. Процессор выдаёт на шину адреса (ША) адреса устройств (абонентов), между которыми должен произойти обмен данными. Абоненты с помощью сигналов управления по шине управления должны согласовать свои действия. Данные, естественно, должны передаваться по шине данных. На рисунке 18.1.4. представлена в обобщённом виде функциональная структура компьютера.


Рис. 18.1.4.

Процессор: функциональное устройство, исполняющее команды программы.

Память компьютера: функциональное устройство, обеспечивающее хранение данных, представленных в электронном виде.

Процессор не обладает функцией хранения. По этой причине, как было уже ранее рассмотрено, процессор постоянно должен обращаться к памяти. В каждом цикле между процессором и памятью происходит обмен 1 словом. Очевидно, что память должна обладать такой же скоростью работы (быстродействием), как и процессор. Были найдены технические элементы, которые обладают быстродействием, близким к быстродействию процессора. Однако эти элементы имеют 2 недостатка. Первый недостаток: хранимые в этой памяти данные пропадают при отключении питания. Второй недостаток относится к сфере экономики: эти устройства достаточно дорогие. Поэтому в современных компьютерах существует 2 уровня памяти. Первый уровень – оперативная память (ОП). Именно только с ней обменивается данными процессор во время исполнения программы.

Память второго уровня составляет жёсткий магнитный диск (ЖМД). Это медленное устройство. Оно обменивается данными с ОП и другими функциональными элементами компьютера. Если проследить развитие персональных компьютеров, то можно видеть постоянный рост объёмов оперативной памяти. Это связано также с экономическим фактором: по мере увеличения выпуска, развития технологий производства элементной базы модули оперативной памяти становятся всё дешевле. Эволюция объёмов ОП: 128 кб, 256 кб, 512 кб, 1 мб, 128 мб, 256 мб, 512 мб, 1 гб, 2 гб и т.д.

В каждом цикле ОП обменивается с процессором 1 словом. В каждом цикле ОП обменивается с ЖМД блоком, состоящим из нескольких слов (Рис. 18.1.5.).

Ядро компьютера: набор функциональных устройств, реализующих функции хранения и обработки. В состав ядра компьютера входят: процессор, оперативная память, ЖМД.

Рис. 18.1.5.

Примечание. Обратите внимание, понятие «ядро компьютера» является функциональным, а не техническим (формальным). Примером формального подхода является разделение памяти на внутреннюю и внешнюю. Внутренней считается оперативная память, внешней - долговременная. Критерием такого разделения является формальная способность устройств памяти хранить информацию после отключения питания. В то же время при этой классификации не объясняются понятия «внутренняя» и «внешняя». Что является тем объектом, по отношению к которому используются эти понятия?

Совет. При введении любой классификации, необходимо чётко определять критерий классификации и все понятия, используемые при описании классификации.

Остальные устройства являются по отношению к ядру устройствами ввода-вывода.

Клавиатура является простейшим устройством ввода в персональном компьютере.

Принтер: устройство вывода данных на бумажный носитель.

Для удобстваработы пользователя в состав персонального компьютера введены графический манипулятор и дисплей.

Графический манипулятор: функциональное устройство, обеспечивающее перемещение графического указателя по экрану дисплея и выдачу программе сигнала на выполнение указанной графическим указателем команды.

Конструктивные реализации графического манипулятора: мышь (mouse), трекбол (trackball), прикосновительная прокладка (touch pad).

Графический указатель: значок, с помощью которого пользователь определяет для программ объект, над которым должна быть выполнена указанная пользователем операция.

Дисплей: функциональное устройство компьютера, обеспечивающее визуальное отображение на экране информации, позволяющей пользователю эффективно использовать возможности компьютера.

Как можно видеть, графический указатель и дисплей не выполняют ни одну из 4-х функций устройства обработки данных.

Привод флоппи-диска: устройство ввода-вывода для обмена данными с внешним носителем данных на базе флоппи-диска (дискеты).

Привод CD -диска: устройство ввода-вывода для обмена данными с внешним носителем данных на базе CD-диска.

Базовая конфигурация персонального компьютера: минимальный набор функциональных устройств, поставляемый покупателю.

Базовый набор меняется в соответствии с технологическими возможностями производителей. В настоящее время в базовую конфигурацию входят: ядро, дисплей, привод CD (DVD) – диска. Привод флоппи-диска уже не всегда поставляется в составе компьютера при продаже.

Модем: устройство ввода-вывода для обмена данными компьютера с каналами аналоговых сигналов (преобразования аналоговых сигналов в дискретные и наоборот).

Магистрально – модульный принцип организации компьютера объединяет функциональный и конструктивный аспекты организации компьютера.

Модуль: функциональный элемент компьютера, реализованный в виде определённой конструкции.

Например, процессор реализован на микросхеме, которая конструктивно оформлена в виде параллелепипеда с множеством контактов для электрического соединения с другими функциональными элементами и вставляется в разъём. Привод CD-диска, DVD-диска, жёсткий магнитный диск выполнены в виде параллелепипедов- коробочек.

Компьютер, как техническая система, должен иметь в своём составе модули, реализующие вспомогательные функции: охлаждение различных устройств (принудительное), защита человека от облучения, соединение всех модулей в виде удобной для установки и переноса конструкции (сборочные элементы).

Каждое функциональное устройство может быть реализовано на различных физических принципах и иметь различное конструктивное исполнение. Сборка компьютера выполняется путём установки и закрепления модулей в сборочных элементах. Ремонт компьютера выполняется на уровне замены модулей.

Сборочные элементы персонального компьютера: системный блок, материнская плата, корпус дисплея, корпус модема.

18.2. Назначение контроллера функционального устройства

В современных персональных компьютерах каждое функциональное устройство компьютера подключается к системной магистрали (Рис. 18.2.1.).


Рис. 18.2.1.

Чтобы можно было управлять функциональным устройством, выдавать ему команды, получать от него информацию о результатах исполнения команд, при необходимости выдавать ему данные или принимать от него данные, между ним и системной магистралью должен происходить обмен сигналами, как управляющими, так и информационными. Естественно, обмен этими сигналами должен происходить по определённым правилам.

Интерфейс: правила взаимодействия между собой технических или программных средств.

В связи с увеличением спроса на компьютеры возникли новые фирмы-разработчики. Результатом их работы стало появление компьютерных платформ и семейств компьютеров с разными интерфейсами у системных магистралей. При этом производители функциональных устройств оказались в сложной ситуации. Им приходилось выпускать разные промышленные изделия, обладающие одинаковыми функциями. Для снижения производственных затрат было найдено следующее решение. Функциональное устройство разделяется на 2 части (Рис. 18.2.2.). Первая часть обладает всеми необходимыми функциями и имеет базовый постоянный интерфейс. Эта часть наиболее сложная и, как правило, определяет стоимость всего функционального устройства. Вторая часть, называемая контроллером , обеспечивает лишь согласование базового аппаратного интерфейса функционального устройства с интерфейсом системной магистрали конкретной компьютерной платформы.

Таким образом, производитель может выпускать одно сложное изделие и несколько простых, которые обеспечивают применение одного сложного устройства в компьютерах с различными интерфейсами системных магистралей.


Рис. 18.2.2.

Применительно к дисплеям эта идея была развита (Рис. 18.2.3.). Контроллер – видеоадаптер (видеоконтроллер) является настолько сложным изделием, что выпускается третьими производителями, но его интерфейс с дисплеями стандартизован. По этой причине производители дисплеев не выпускают видеоконтроллеры.

Основные блоки ПК и их назначение

Понятие архитектуры и структуры

Архитектура компьютера определяется совокупностью ее свойств, существенных для пользователя. Основное внимание при этом уделяется структуре и функциональным возможностям ПК, которые делят на основные и дополнительные.

Основные функции определяют назначение ЭВМ: обработка и хранение информации, обмен информацией с внешними объектами. Дополнительные функции повышают эффективность выполнения основных функций: обеспечивают эффективные режимы ее работы, диалог с пользователем, высокую надежность и др. Названные функции ЭВМ реализуются с помощью ее компонентов: аппаратных и программных средств.

Структура компьютера - это некоторая модель, устанавливающая состав, порядок и принципы взаимодействия, входящих в нее компонентов.

Персональный компьютер - это настольная или переносная ЭВМ, и универсальности применения. Достоинства ми ПК являются:

  • 1. малая стоимость, находящаяся в пределах доступности для индивидуального покупателя;
  • 2. автономность эксплуатации без специальных требований к условиям окружающей среды;
  • 3. гибкость архитектуры, обеспечивающая ее адаптивность к разнообразным применениям в сфере управления, науки, образования, в быту;
  • 4. «дружественность» операционной системы и прочего программного обеспечения, обусловливающая возможность работы с ней пользователя без специальной профессиональной подготовки;
  • 5. высокая надежность работы (более 5 тыс. ч наработки на отказ)

Структура персонального компьютера

Рассмотрим состав и назначение основных блоков ПК применительно к IBM PC-подобным компьютерам, удовлетворяющая требованиям общедоступности.

Микропроцессор (МП). Это центральный блок ПК, предназначенный для управления работой всех блоков машины и для выполнения арифметических и логических операций над информацией.

В состав МП входят:

  • 1. устройство управления (УУ) - формирует и подает во все блоки машины в нужные моменты времени определенные сигналы» - w управления (управляющие импульсы), обусловленные спецификой выполняемой операции и результатами предыдущих операций; формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки ЭВМ. Опорную последовательность импульсов УУ получает от генератора тактовых импульсов;
  • 2. арифметико-логическое устройство (АЛУ) - предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией (в некоторых моделях ПК для ускорения выполнения операций к. АЛУ подключается дополнительный математический сопроцессору;
  • 3. микропроцессорная память (МПП) - служит для кратковременного хранения, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины. МПП строится на регистрах и используется для обеспечения высокого быстродействия машины, ибо основная память (ОП) не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего МП. Регистры - быстродействующие ячейки памяти различной длины (в отличие от ячеек ОП, имеющих стандартную длину 1 байт и более низкое быстродействие);
  • 4. интерфейсная система микропроцессора - реализует сопряжение и связь с другими устройствами ПК; включает в себя внутренний интерфейс МП, буферные запоминающие регистры и схемы управления портами ввода-вывода (ПВВ) и системной шиной. Интерфейс (interface) - совокупность средств сопряжения и связи устройств компьютера, обеспечивающая их эффективное взаимодействие. Порт ввода-вывода (I/O - Input/Output port) - аппаратура сопряжения, позволяющая подключить к микропроцессору другое устройство ПК.

Генератор тактовых импульсов. Он генерирует последовательность электрических импульсов; частота генерируемых импульсов определяет тактовую частоту машины.

Промежуток времени между соседними импульсами определяет время одного такта работы или просто такт работы машины. Частота генератора тактовых импульсов является одной из основных характеристик персонального компьютера и во многом определяет скорость его работы, ибо каждая операция в машине выполняется за определенное количество тактов.

Системная шина. Это основная интерфейсная система ПК, обеспечивающая сопряжение и связь всех его устройств между собой.

Системная шина включает в себя:

  • 1. кодовую шину данных (КШД), содержащую провода и схемы сопряжения для параллельной передачи всех разрядов числового кода (машинного слова) операнда;
  • 2. кодовую шину адреса (КША), включающую провода и схемы сопряжения для параллельной передачи всех разрядов кода адреса ячейки основной памяти или порта ввода-вывода внешнего устройства;
  • 3. кодовую шину инструкций (КШИ), содержащую провода и схемы сопряжения для передачи инструкций (управляющих сигналов, импульсов) во все блоки машины; шину питания, имеющую провода и схемы сопряжения для подключения блоков ПК к системе энергопитания.

Системная шина обеспечивает три направления передачи информации:

  • - между микропроцессором и основной памятью;
  • - между, микропроцессором и портами ввода-вывода внешних устройств;
  • - между основной памятью и портами ввода-вывода внешних устройств (в режиме прямого доступа к памяти).

Все блоки, а точнее их порты ввода-вывода, через соответствующие унифицированные разъемы (стыки) подключаются к шине единообразно: непосредственно или через контроллеры (адаптеры). Управление системной шиной осуществляется микропроцессором либо непосредственно, либо, что чаще, через дополнительную микросхему - контроллер шины, формирующий основные сигналы управления. Обмен информацией между внешними устройствами и системной шиной выполняется с использованием ASCII-кодов.

Основная память (ОП). Она предназначена для хранения и оперативного обмена информацией с прочими блоками машины. ОП содержит два вида устройств: постоянное запоминающее устройство (ПЗУ) и оперативное запоминающее устройство (ОЗУ).

ПЗУ служит для хранения неизменяемой (постоянной) программной и справочной информации, позволяет оперативно только считывать хранящуюся в нем информацию (изменить информацию в ПЗУ нельзя).

ОЗУ предназначено для оперативной записи, хранения и считывания информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ПК в текущий период времени. Главными достоинствами оперативной памяти являются ее высокое быстродействие и возможность обращения к каждой ячейке памяти отдельно (прямой адресный доступ к ячейке). В качестве недостатка ОЗУ следует отметить невозможность сохранения информации в ней после выключения питания машины (энергозависимость).

Внешняя память. Она относится к внешним устройствам ПК и используется для долговременного хранения любой информации, которая может когда-либо потребоваться для решения задач. В частности, во внешней памяти хранится все программное обеспечение компьютера. Внешняя память содержит разнообразные виды запоминающих устройств, но наиболее распространенными, имеющимися практически на любом компьютере, являются накопители на жестких (НЖМД) и гибких (НГМД) магнитных дисках.

Назначение этих накопителей - хранение больших объемов информации, запись и выдача хранимой информации по запросу в оперативное запоминающее устройство. Различаются НЖМД и НГМД лишь конструктивно, объемами хранимой информации и временем поиска, записи и считывания информации.

В качестве устройств внешней памяти используются также запоминающие устройства на кассетной магнитной ленте (стримеры), накопители на оптических дисках (CD-ROM - Compact Disk Read Only Memory - компакт-диск с памятью, только читаемой) и др.

Источник питания. Это блок, содержащий системы автономного и сетевого энергопитания ПК.

Таймер. Это внутримашинные электронные часы, обеспечивающие при необходимости автоматический съем текущего момента времени (год, месяц, часы, минуты, секунды и доли секунд). Таймер подключается к автономному источнику питания - аккумулятору и при отключении машины от сети продолжает работать.

Внешние устройства (ВУ). Это важнейшая составная часть любого вычислительного комплекса. Достаточно сказать, что по стоимости ВУ иногда составляют 50 - 80% всего ПК. От состава и характеристик ВУ во многом зависят возможность и эффективность применения ПК в системах управления и в народном хозяйстве в целом.

ВУ ПК обеспечивают взаимодействие машины с окружающей средой: пользователями, объектами управления и другими ЭВМ. ВУ весьма разнообразны и могут быть классифицированы по ряду признаков. Так, по назначению можно выделить следующие виды ВУ:

  • - внешние запоминающие устройства (ВЗУ) или внешняя память ПК;
  • - диалоговые средства пользователя;
  • - устройства ввода информации;
  • - устройства вывода информации;
  • - средства связи и телекоммуникации.

Диалоговые средства пользователя включают в свой состав видеомониторы (дисплеи), реже пультовые пишущие машинки (принтеры с клавиатурой) и устройства речевого ввода-вывода информации.

Видеомонитор (дисплей) - устройство для отображения вводимой и выводимой из ПК информации.

Устройства речевого ввода-вывода относятся к быстроразвивающимся средствам мультимедиа. Устройства речевого ввода - это различные микрофонные акустические системы, «звуковые мыши», например, со сложным программным обеспечением, позволяющим распознавать произносимые человеком буквы и слова, идентифицировать их и закодировать.

Устройства речевого вывода - это различные синтезаторы звука, выполняющие преобразование цифровых кодов в буквы и слова, воспроизводимые через громкоговорители (динамики) или звуковые колонки, подсоединенные к компьютеру.

К устройствам ввода информации относятся:

  • · клавиатура - устройство для ручного ввода числовой, текстовой и управляющей информации в ПК;
  • · графические планшеты (диджитайзеры) - для ручного ввода графической информации, изображений путем перемещения по планшету специального указателя (пера); при перемещении пера автоматически выполняются считывание координат его местоположения и ввод этих координат в ПК;
  • · сканеры (читающие автоматы) - для автоматического считывания с бумажных носителей и ввода в ПК машинописных текстов, графиков, рисунков, чертежей; в устройстве кодирования сканера в текстовом режиме считанные символы после сравнения с эталонными контурами специальными программами преобразуются в коды ASCII, а в графическом режиме считанные графики и чертежи преобразуются в последовательности двухмерных координат;
  • · манипуляторы (устройства указания): джойстик - рычаг, мышь, трекбол - шар в оправе, световое перо и др. - для ввода графической информации на экран дисплея путем управления движением курсора по экрану с последующим кодированием координат курсора и вводом их в ПК;
  • · сенсорные экраны - для ввода отдельных элементов изображения, программ или команд с полиэкрана дисплея в ПК.

К устройствам вывода информации относятся:

  • · принтеры - печатающие устройства для регистрации информации на бумажный носитель;
  • · графопостроители (плоттеры) - для вывода графической информации (графиков, чертежей, рисунков) из ПК на бумажный носитель; плоттеры бывают векторные с вычерчиванием изображения с помощью пера и растровые: термографические, электростатические, струйные и лазерные. По конструкции плоттеры подразделяются на планшетные и барабанные. Основные характеристики всех плоттеров примерно одинаковые: скорость вычерчивания - 100 - 1000 мм/с, у лучших моделей возможны цветное изображение и передача полутонов; наибольшая разрешающая способность и четкость изображения у лазерных плоттеров, но они самые дорогие.

Устройства связи и телекоммуникации используются для связи с приборами и другими средствами автоматизации (согласователи интерфейсов, адаптеры, цифро-аналоговые и аналого-цифровые преобразователи и т.п.) и для подключения ПК к каналам связи, к другим ЭВМ и вычислительным сетям (сетевые интерфейсные платы, «стыки», мультиплексоры передачи данных, модемы).

В частности сетевой адаптер является внешним интерфейсом ПК и служит для подключения его к каналу связи для обмена информацией с другими ЭВМ, для работы в составе вычислительной сети. В глобальных сетях функции сетевого адаптера выполняет модулятор-демодулятор (модем).

Многие из названных выше устройств относятся к условно выделенной группе - средствам мультимедиа.

Средства мультимедиа (multimedia - «многосредовость») - это комплекс аппаратных и программных средств, позволяющих человеку общаться с компьютером, используя самые разные, естественные для себя среды: звук, видео, графику, тексты, анимацию и др.

К средствам мультимедиа относятся устройства речевого ввода и вывода информации: широко распространенные уже сейчас сканеры (поскольку они позволяют автоматически вводить в компьютер печатные тексты и рисунки); высококачественные видео - (video-) и звуковые (sound-) платы, платы видеозахвата (videograbber), снимающие изображение с видеомагнитофона или видеокамеры и вводящие его в ПК; высококачественные акустические и видеовоспроизводящие системы с усилителями, звуковыми колонками, большими видеоэкранами. Но, пожалуй, еще с большим основанием к средствам мультимедиа относят внешние запоминающие устройства большой емкости на оптических дисках, часто используемые для записи звуковой и видеоинформации.

Стоимость компактных дисков (CD) при их массовом тиражировании невысокая, а учитывая их большую емкость (650 Мбайт, а новых типов - 1 Гбайт и выше), высокие надежность и долговечность, стоимость хранения информации на CD для пользователя оказывается несравнимо меньшей, нежели на магнитных дисках. Это уже привело к тому, что большинство программных средств самого разного назначения поставляется на CD На компакт-дисках за рубежом организуются обширные базы данных, целые библиотеки; на CD представлены словари, справочники, энциклопедии; обучающие и развивающие программы по общеобразовательным и специальным предметам.

CD широко используются, например, при изучении иностранных языков, правил дорожного движения, бухгалтерского учета, законодательства вообще и налогового законодательства в частности. И все это сопровождается текстами и рисунками, речевой информацией и мультипликацией, музыкой и видео. В чисто бытовом аспекте CD можно использовать для хранения аудио- и видеозаписей, т.е. использовать вместо плейерных аудиокассет и видеокассет. Следует упомянуть, конечно, и о большом количестве программ компьютерных игр, хранимых на CD.

Таким образом, CD-ROM открывает доступ к огромным объемам разнообразной и по функциональному назначению, и по среде воспроизведения информации, записанной на компакт-дисках.

Дополнительные схемы . К системной шине и к МП ПК наряду с типовыми внешними устройствами могут быть подключены и некоторые дополнительные платы с интегральными микросхемами, расширяющие и улучшающие функциональные возможности микропроцессора: математический сопроцессор, контроллер прямого доступа к памяти, сопроцессор ввода-вывода, контроллер прерываний и др.

Математический сопроцессор широко используется для ускоренного выполнения операций над двоичными числами с плавающей запятой, над двоично-кодированными десятичными числами, для вычисления некоторых трансцендентных, в том числе тригонометрических, функций. Математический сопроцессор имеет свою систему команд и работает параллельно (совмещение во времени) с основным МП, но под управлением последнего. Ускорение операций происходит в десятки раз. Модели МП, начиная с МП 80486 DX, включают сопроцессор в свою структуру.

Контроллер прямого доступа к памяти освобождает МП от прямого управления накопителями на магнитных дисках, что существенно повышает эффективное быстродействие ПК. Без этого контроллера обмен данными между ВЗУ И ОЗУ осуществляется через регистр МП, а при его наличии данные непосредственно передаются между ВЗУ и ОЗУ, минуя МП

Сопроцессор ввода-вывода за счет параллельной работы с МП значительно ускоряет выполнение процедур ввода-вывода при обслуживании нескольких внешних устройств (дисплей, принтер, НЖМД НГМД и др.): освобождает МП от обработки процедур ввода-вывода, в том числе реализует и режим прямого доступа к памяти.

Важнейшую роль играет в ПК контроллер прерываний.

Прерывание - временный останов выполнения одной программы в целях оперативного выполнения другой, в данный момент более важной (приоритетной) программы.

Прерывания возникают при работе компьютера постоянно . Достаточно сказать, что все процедуры ввода-вывода информации выполняются по прерываниям, например, прерывания от таймера возникают и обслуживаются контроллером прерываний 18 раз в секунду (естественно, пользователь их не замечает).

Контроллер прерываний обслуживает процедуры прерывания, принимает запрос на прерывание от внешних устройств, определяет уровень приоритета этого запроса и выдает сигнал прерывания в МП. МП, получив этот сигнал, приостанавливает выполнение текущей программы и переходит к выполнению специальной программы обслуживания того прерывания, которое запросило внешнее устройство. После завершения программы обслуживания восстанавливается выполнение прерванной программы. Контроллер прерываний является программируемым.

Поскольку массовое распространение в настоящее время получили персональные компьютеры, их функциональную и структурную организацию рассмотрим подробно.

Основные блоки ПК и их назначение

Структурная схема персонального компьютера представлена на рис. 3.13.

Рис. 3.13. Структурная схема ПК

Микропроцессор

Микропроцессор(МП) - центральное устройство ПК, предназначенное для управления работой всех блоков машины и для выполнения арифметических и логических операций над информацией.

В состав микропроцессора входят несколько компонентов.

Ÿ Устройство управления (УУ): формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполняемой операции и результатами предыдущих операций; формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки компьютера; опорную последовательность импульсов устройство управленияполучает от генератора тактовых импульсов.

Ÿ Арифметико-логическое устройство (АЛУ): предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией (в некоторых моделях ПК для ускорения выполнения операций к АЛУ подключается дополнительный математический сопроцессор).

Ÿ Микропроцессорная память (МПП): предназначена для кратковременного хранения, записи и выдачи информации непосредственно используемой в ближайшие такты работы машины; МПП строится на регистрах для обеспечения высокого быстродействия машины, ибо основная память(ОП) не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора. Регистры - быстродействующие ячейки памяти различной длины (в отличие от ячеек ОП, имеющих стандартную длину 1 байт и более низкое быстродействие).

Ÿ Интерфейсная система микропроцессора предназначена для сопряжения и связи с другими устройствами ПК; включает в себя внутренний интерфейсМП, буферные запоминающие регистры и схемы управления портами ввода-вывода (ПВВ) и системной шиной.

Итак, интерфейс (interface) - совокупность средств сопряжения и связи устройств компьютера, обеспечивающая их эффективное взаимодействие.

Порт вода-вывода (I/O port) - элементы системного интерфейса ПК, через которые МП обменивается информацией с другими устройствами.

Ÿ Генератор тактовых импульсов генерирует последовательность электрических импульсов, частота которых определяет тактовую частоту микропроцессора. Промежуток времени между соседними импульсами определяет время одного такта или, просто, такт работы машины. Частота генератора тактовых импульсов является одной из основных характеристик персонального компьютера и во многом определяет скорость его работы, поскольку каждая операция в вычислительной машине выполняется за определенное количество тактов.

Системная шина

Системная шина - основная интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой. Системная шина включает в себя:

Ÿ кодовую шину данных (КШД), содержащую провода и схемы сопряжения для параллельной передачи всех разрядов числового кода (машинного слова) операнда;

Ÿ кодовую шину адреса (КША), содержащую провода и схемы сопряжения для параллельной передачи всех разрядов кода адреса ячейки основной памяти или порта ввода-вывода внешнего устройства;

Ÿ кодовую шину инструкций (КШИ), содержащую провода и схемы сопряжения для передачи инструкций (управляющих сигналов, импульсов) во все блоки машины;

Ÿ шину питания, содержащую провода и схемы сопряжения для подключения блоков ПК к системе энергопитания.

Системная шина обеспечивает три направления передачи информации:

Ÿ между микропроцессором и основной памятью;

Ÿ между микропроцессором и портами ввода-вывода внешних устройств;

Ÿ между основной памятью и портами ввода-вывода внешних устройств (в режиме прямого доступа к памяти).

Все блоки, а точнее их порты ввода-вывода, через соответствующие унифицированные разъемы (стыки) подключаются к шине единообразно: непосредственно или через контроллеры (адаптеры). Управление системной шиной осуществляется микропроцессором либо непосредственно, либо, что чаще, через дополнительную микросхему контроллерашины , формирующую основные сигналы управления. Обмен информацией между внешними устройствами и системной шиной выполняется с использованием ASCII-кодов.

Основная память

Основная память (ОП) предназначена для хранения и оперативного обмена информацией с прочими блоками машины. ОП содержит два вида запоминающих устройств:постоянное запоминающее устройство (ПЗУ) и оперативное запоминающее устройство (ОЗУ).

Ÿ ПЗУ (ROM - Read Only Memory) предназначено для хранения неизменяемой (постоянной) программной и справочной информации; позволяет оперативно только считывать информацию, хранящуюся в нем (изменить информацию в ПЗУ нельзя);

Ÿ ОЗУ (RAM - Random Access Memory) предназначено для оперативной записи, хранения и считывания информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ПК в текущий период времени.

Главными достоинствами оперативной памяти являются ее высокое быстродействие и возможность обращения к каждой ячейке памяти отдельно (прямой адресный доступ к ячейке). В качестве недостатка оперативной памяти следует отметить невозможность сохранения информации в ней после выключения питания машины (энергозависимость).

Кроме основной памяти на системной плате ПК имеется и энергонезависимая памятьCMOS RAM (Complementary Metal-Oxide Semiconductor RAM), постоянно питающаяся от своего аккумулятора; в ней хранится информация об аппаратной конфигурации ПК (обо всей аппаратуре, имеющейся в компьютере), которая проверяется при каждом включении системы.

Внешняя память

Внешняя память относится к внешним устройствам ПК и используется для долговременного хранения любой информации, которая может когда либо потребоваться для решения задач. В частности, во внешней памяти хранится все программное обеспечение компьютера. Внешняя память представлена разнообразными видами запоминающих устройств, но наиболее распространенными из них, имеющимися практически на любом компьютере, являются показанные на структурной схеме накопители на жестких (НЖМД ) и гибких (НГМД) магнитных дисках.

Назначение этих накопителей: хранение больших объемов информации, запись и выдача информации по запросу в оперативное запоминающее устройство. Различаются НЖМД и НГМД конструктивно, объемами хранимой информации и временем ее поиска, записи и считывания. В качестве устройств внешней памяти часто используются также накопители на оптических дисках(CD ROM - Compact Disk Read Only Memory) и реже - запоминающие устройства на кассетной магнитной ленте (НКМЛ, стримеры).

Источник питания

Источник питания - блок, содержащий системы автономного и сетевого энергопитания ПК.

Таймер

Таймер - внутримашинные электронные часы реального времени, обеспечивающие, при необходимости, автоматический съем текущего момента времени (год, месяц, часы, минуты, секунды и доли секунд). Таймер подключается к автономному источнику питания - аккумулятору, и при отключении машины от электросети продолжает работать.

Внешние устройства

Внешние устройства (ВУ) ПК - важнейшая составная часть любого вычислительного комплекса, достаточно сказать, что по стоимости ВУ составляют до 80–85% стоимости всего ПК.

ВУ ПК обеспечивают взаимодействие машины с окружающей средой: пользователями, объектами управления и другими компьютерами.

К внешним устройствам относятся:

Ÿ внешние запоминающие устройства(ВЗУ) или внешняя память ПК;

Ÿ диалоговые средства пользователя;

Ÿ устройства ввода информации;

Ÿ устройства вывода информации;

Ÿ средства связи и телекоммуникаций.

Диалоговые средства пользователя включают в свой состав:

Ÿ видеомонитор(видеотерминал, дисплей) - устройство для отображения вводимой и выводимой из ПК информации;

Ÿ устройства речевого ввода-вывода - быстро развивающиеся средства мультимедиа. Это различные микрофонные акустические системы, «звуковые мыши» со сложным программным обеспечением, позволяющим распознавать произносимые человеком буквы и слова, идентифицировать их и кодировать; синтезаторы звука, выполняющие преобразование цифровых кодов в буквы и слова, воспроизводимые через громкоговорители (динамики) или звуковые колонки, подсоединенные к компьютеру.

К устройствамввода информации относятся:

Ÿ клавиатура- устройство для ручного ввода числовой, текстовой и управляющей информации в ПК;

Ÿ графические планшеты (дигитайзеры) - устройства для ручного ввода графической информации, изображений путем перемещения по планшету специального указателя (пера); при перемещении пера автоматически выполняется считывание координат его местоположения и ввод этих координат в ПК;

Ÿ сканеры(читающие автоматы) - оборудование для автоматического считывания с бумажных и пленочных носителей и ввода в ПК машинописных текстов, графиков, рисунков, чертежей;

Ÿ устройства целеуказания (графические манипуляторы), предназначенные для ввода графической информации на экран дисплея путем управления движением курсора по экрану с последующим кодированием координат курсора и вводом их в ПК (джойстик - рычаг, мышь, трекбол - шар в оправе, световое перо и т. д.);

Ÿ сенсорные экраны - для ввода отдельных элементов изображения, программ или команд с экрана дисплея в ПК.

Кустройствамвывода информации относятся:

Ÿ принтеры - печатающие устройства для регистрации информации на бумажный или пленочный носитель;

Ÿ графопостроители (плоттеры) - устройства для вывода графической информации (графиков, чертежей, рисунков) из ПК на бумажный носитель.

Устройства связи и телекоммуникации используются для связи с приборами и другими средствами автоматизации (согласователи интерфейсов, адаптеры, цифро-аналоговые и аналого-цифровые преобразователи и т. п.) и для подключения ПК к каналам связи, к другим компьютерам и вычислительным сетям (сетевые интерфейсные платы и карты - сетевые адаптеры, «стыки», мультиплексорыпередачи данных, модемы - модуляторы/демодуляторы).

В частности, показанный на рис. 4.1 сетевой адаптеротносится к внешнему интерфейсу ПК и служит для подключения его к каналу связи с целью обмена информацией с другими компьютерами при работе в составе вычислительной сети. В качестве сетевого адаптера чаще всего используется модем.

Многие из названных выше устройств относится к условно выделенной группе средств мультимедиа.

Мультимедиа (multimedia, многосредовость) - это комплекс аппаратных и программных средств, позволяющих человеку общаться с компьютером, используя самые разные, естественные для себя среды: звук, видео, графику, тексты, анимацию и т. д. К средствам мультимедиа относятся устройства речевого ввода и устройства речевого вывода информации; микрофоны и видеокамеры, акустические и видеовоспроизводящие системы с усилителями, звуковыми колонками, большими видеоэкранами; звуковые и видеоадаптеры, платы видеозахвата, снимающие изображение с видеомагнитофона или видеокамеры и вводящие его в ПК; широко распространенные уже сейчас сканеры, позволяющие автоматически вводить в компьютер печатные тексты и рисунки; наконец, внешние запоминающие устройства большой емкости на оптических дисках, часто используемые для записи звуковой и видеоинформации.

Введение

Один из важнейших факторов научно-технического прогресса - широкая автоматизация и компьютеризация производства. Почти каждое предприятие или учреждение обслуживается вычислительным центром, оснащенным компьютерами.

В связи с этим очень важно сделать правильный выбор при покупке персонального компьютера (ПК). Обоснованный выбор ПК - одна из проблем всех пользователей компьютеров. Путей ее решения несколько:

привлечение независимых специалистов - экспертов;

использование собственных знаний, приобретенного опыта, интуиции;

учет сведений, приобретенных в литературе научного и рекламного характера.

Поэтому в качестве теоретической части данной курсовой работы выбрана весьма актуальная, на мой взгляд, тема «Функциональная и структурная организация компьютера».

Теоретическая часть данной работы состоит из следующих пунктов:

1. Введение; 2.Структурная организация ПК; 3.Функциональная организация ПК; 4.Заключение.

В практической части работы при оформлении отчета о реализации решения экономической задачи на ПК следует руководствоваться ниже приведенным планом: 1. Общая характеристика задачи; 2. Выбор пакета прикладных программ (ППП); 3. Проектирование форм выходных данных и графическое представление данных по выбранной задаче; 4. Результаты выполнения контрольного примера; 5. Инструкция пользователя.

Для выполнения и оформления работы использовались следующие ППП: Microsoft Word, Access, Excel.

Данная работа выполнена на ПК с микропроцессором AMD Athlon XP 1500+, объемом оперативной памяти DDR 512 Мбайт.

Теоретическая часть

Структурная организация ПК

Персональный компьютер содержит множество электронных элементов, которые объединяются в более крупные компоненты, - модули, узлы, цепи, схемы, блоки и так далее. Если из всего этого разнообразия электронных компонентов изъять хотя бы один, то вся информационно-вычислительная компьютерная система перестанет работать.

ПК представляет собой универсальную микропроцессорную систему, которая может применяться как в автономном режиме, так и в сетях и удовлетворяет требованиям универсальности применения.

Имеется большое количество моделей ПК. Их делят на 2 группы:

а) компьютеры IBM - совместимые;

б) компьютеры фирмы Apple .

Сердцем компьютера является микропроцессор (МП) - центральный блок компьютера, предназначенный для управления работой всех остальных блоков машины и для выполнения арифметических и логических операций над данными. МП представляет собой функционально законченное программно-управляемое устройство обработки информации. Он выполнен в виде одной или нескольких больших или сверхбольших интегральных схем. В состав МП входят:

устройство управления - управляет работой всех блоков машины;

арифметико-логическое устройство - выполняются все арифметические и логические операции над данными;

микропроцессорная память - предназначена для кратковременного хранения, записи и выдачи информации, которая непосредственно применяется в вычислениях в ближайших тактах работы машины;

интерфейсная система микропроцессора - обеспечивает соединение и связь с другими устройствами компьютера. Интерфейс - совокупность средств соединения и связи устройств компьютера, обеспечивающая их эффективное взаимодействие.

3. Лекция. Архитектура современных высокопроизводительных ЭВМ. Функциональная структура компьютера. Основные концепции функционирования. Программное обеспечение компьютера. Основы алгоритмизации.



      1. Устройство ввода

      2. Блок памяти

      3. Арифметико-логическое устройство

      4. Блок вывода

      5. Блок управления

    1. Основные концепции функционирования

    2. Структура шины

    3. Программное обеспечение

      1. Этапы подготовки и решения задач на ЭВМ

      2. Алгоритмы и способы их описания

Функциональная структура компьютера

Как следует из рис. 3.1, компьютер состоит из пяти главных, функционально не­зависимых частей:

Устройство ввода,

Устройство памяти,

Арифметико-логическое устройство,

Устройство вывода и

Устройство управления.

Устройство ввода при­нимает через цифровые линии связи закодированную информацию от операто­ров, электромеханических устройств типа клавиатуры или от других компьюте­ров сети. Полученная информация либо сохраняется в памяти компьютера для последующего применения, либо немедленно используется арифметическими и логическими схемами для выполнения необходимых операций. Последователь­ность шагов обработки определяется хранящейся в памяти программой. Полу­ченные результаты отправляются обратно, во внешний мир, посредством устрой­ства вывода. Все эти действия координируются блоком управления. На рис. 3.1. намеренно не показаны связи между функциональными устройствами. Объясня­ется это тем, что такие связи могут быть по-разному реализованы. Как именно, вы поймете несколько позже. Арифметические и логические схемы в комплексе с главными управляющими схемами называют процессором, а все вместе взятое оборудование для ввода и вывода часто называют устройством ввода-вывода (input-output unit).

Теперь обратимся к обрабатываемой компьютером информации. Ее удобно разделять на две основные категории: команды и данные. Команды, или машин­ные команды, - это явно заданные инструкции, которые:

Управляют пересылкой информации внутри компьютера, а также между компьютером и его устройствами ввода-вывода;

Определяют подлежащие выполнению арифметические и логические операции.

Список команд, выполняющих некоторую задачу, называется программой. Обыч­но программы хранятся в памяти. Процессор по очереди извлекает команды про­граммы из памяти и реализует определяемые ими операции. Компьютер полно­стью управляется хранимой программой , если не считать возможность внешнего вмешательства оператора и подсоединенных к машине устройств ввода-вывода.

Данные - это числа и закодированные символы, используемые в качестве опе­рандов команд. Однако термин «данные» часто используется для обозначения любой цифровой информации. Согласно этому определению, сама программа (то есть список команд) также может считаться данными, если она обрабатывается другой программой. Примером обработки одной программой другой является компиляция исходной программы, написанной на языке высокого уровня, в список машинных команд, составляющих программу на машинном языке, которая назы­вается объектной программой. Исходная программа поступает на вход компиля­тора, который транслирует ее в программу на машинном языке.

Рис. 3.1. Базовые функциональные устройства компьютера

Информация, предназначенная для обработки компьютером, должна быть зако­дирована, чтобы иметь подходящий для компьютера формат. Современное аппа­ратное обеспечение в большинстве своем основано на цифровых схемах, у которых имеется только два устойчивых состояния, ON и OFF (см. лекцию 2). В ре­зультате кодирования любое число, символ или команда преобразуется в строку двоичных цифр, называемых битами, каждый из которых имеет одно из двух воз­можных значений: 0 или 1. Для представления чисел (как станет ясно из лекции 4) обычно используется позиционная двоичная нотация. Иногда применяется двоич­но-десятичный формат (Binary-Coded Decimal, BCD), в соответствии с которым каждая десятичная цифра кодируется отдельно, с помощью четырех бит.

Буквы и цифры также представляются посредством двоичных кодов. Для них разработано несколько разных схем кодирования. Наиболее распространенными считаются схемы ASCII (American Standard Code for Information Interchange - американский стандартный код для обмена информацией), где каждый символ представлен 7-битовым кодом, и EBCDIC (Extended Binary Coded Decimal Inter­change Code - расширенный двоично-десятичный код для обмена информаци­ей), в котором для кодирования символа используется 8 бит.

3.1.1. Устройство ввода

Компьютер принимает кодированную информацию через устройство ввода, зада­чей которого является чтение данных. Наиболее распространенным устройством ввода является клавиатура. Когда пользователь нажимает клавишу, соответст­вующая буква или цифра автоматически преобразуется в определенный двоич­ный код и по кабелю пересылается либо в память, либо процессору.

Существует и ряд других устройств ввода, среди которых джойстики, трекболы и мыши. Они используются совместно с дисплеем в качестве графических входных устройств. Для ввода звука могут использоваться микрофоны. Воспри­нимаемые ими звуковые колебания измеряются и конвертируются в цифровые коды для хранения и обработки.

3.1.2. Блок памяти

Задачей блока памяти является хранение программ и данных. Существует два класса запоминающих устройств, а именно первичные и вторичные. Первичное за­поминающее устройство (primary storage) - это память, быстродействие которой определяется скоростью работы электронных схем. Пока программа выполняет­ся, она должна храниться в первичной памяти. Эта память состоит из большого количества полупроводниковых ячеек, каждая из которых может хранить один бит информации. Ячейки редко считываются по отдельности - обычно они обра­батываются группами фиксированного размера, называемыми словами. Память организована так, что содержимое одного слова, содержащего n бит, может запи­сываться или считываться за одну базовую операцию.

Для облегчения доступа к словам в памяти с каждым словом связывается от­дельный адрес. Адреса - это числа, идентифицирующие конкретные местополо­жения слов в памяти. Для того чтобы прочитать слово из памяти или записать его в таковую, необходимо указать его адрес и задать управляющую команду, которая начнет соответствующую операцию.

Количество битов в каждом слове часто называют длиной машинного слова. Обычно слово имеет длину от 16 до 64 бит. Одним из факторов, характеризую­щих класс компьютера, является емкость его памяти. Малые машины обычно мо­гут хранить лишь несколько десятков миллионов слов, тогда как средние и боль­шие машины обычно способны хранить сотни миллионов и миллиарды слов. Типичными еди­ницами измерения количества обрабатываемых машиной данных являются слово, несколько слов или часть слова. Как правило, за время одного обращения к памя­ти считывается или записывается только одно слово.

Во время выполнения программа должна находиться в памяти. Команды и дан­ные должны записываться в память и считываться из памяти под управлением процессора. Исключительно важна возможность предельно быстрого доступа к лю­бому слову памяти. Память, к любой точке которой можно получить доступ за ко­роткое и фиксированное время, называется памятью с произвольным доступом (Random-Access Memory, RAM). Время, необходимое для доступа к одному слову, называется временем доступа к памяти. Это время всегда одинаково, независимо от того, где располагается нужное слово. Время доступа к памяти в современных устройствах RAM составляет от нескольких наносекунд до 100. Память компьюте­ра обычно представляет собой иерархическую структуру, состоящую из трех или четырех уровней полупроводниковых RAM-элементов с различной скоростью и разным размером. Наиболее быстродействующим типом RAM-памяти является кэш-память (или просто кэш). Она напрямую связана с процессором и часто нахо­дится на одном с ним интегрированном чипе, благодаря чему работа процессора значительно ускоряется. Память большей емкости, но менее быстрая, называется основной памятью (main memory). Далее в этой лекции процесс доступа к информа­ции в памяти описывается подробнее, а позднее мы детально рассмотрим прин­ципы ее функционирования и вопросы, связанные с производительностью.

Первичные запоминающие устройства являются исключительно важными компонентами для компьютера, но они довольно дороги. Поэтому компьютеры оборудуются дополнительными, более дешевыми вторичными запоминающими устройствами, используемыми для хранения больших объемов данных и боль­шого количества программ. В настоящее время таких устройств имеется доста­точно много. Но наиболее широкое распространение получили магнитные диски, магнитные ленты и оптические диски (CD-ROM).

3.1.3. Арифметико-логическое устройство

Большинство компьютерных операций выполняется в арифметико-логическом устройстве (АЛУ) процессора. Рассмотрим типичный пример. Предположим, нам нужно сложить два находящихся в памяти числа. Эти числа пересылаются в процессор, где АЛУ выполняет их сложение. Полученная сумма может быть за­писана в память или оставлена в процессоре для немедленного использования.

Любые другие арифметические или логические операции, в том числе умно­жение, деление и сравнение чисел, начинаются с пересылки этих чисел в процес­сор, где АЛУ должно выполнить соответствующую операцию. Когда операнды переносятся в процессор, они сохраняются в высокоскоростных элементах памя­ти, называемых регистрами. Каждый регистр может хранить одно слово данных. Время доступа к регистрам процессора даже меньше времени доступа к самой бы­строй кэш-памяти.

Управляющее и арифметико-логическое устройства работают во много раз бы­стрее, чем все остальные устройства, подключенные к компьютерной системе. Это позволяет одному процессору контролировать множество внешних устройств, та­ких как клавиатуры, дисплеи, магнитные и оптические диски, сенсоры и механи­ческие управляющие устройства.

3.1.4. Блок вывода

Функция блока вывода противоположна функции блока ввода: он направляет ре­зультаты обработки в так называемый внешний мир. Типичным примером устрой­ства вывода является принтер. Для печати в принтерах используются ударные ме­ханизмы, головки, выпрыскивающие струи чернил, или технологии фотокопирова­ния, как в лазерных принтерах. Существуют принтеры, способные печатать до 10 000 строк в минуту. Для механического устройства это огромная скорость, но по сравнению с быстродействием процессора она ничтожно мала.

Некоторые устройства, и в частности графические дисплеи, выполняют одно­временно и функцию вывода, и функцию ввода. Поэтому они называются устрой­ствами ввода-вывода.

3.1.5. Блок управления

Устройства памяти, арифметики и логики, ввода и вывода хранят и обрабатыва­ют информацию, а также выполняют операции ввода и вывода. Работу таких уст­ройств нужно как-то координировать. Именно этим и занимается блок управле­ния. Это, если можно так выразиться, нервный центр компьютера, передающий управляющие сигналы другим устройствам и отслеживающий их состояние.

Управление операциями ввода-вывода осуществляется командами программ, в которых идентифицируются соответствующие устройства ввода-вывода и пере­сылаемые данные. Однако реальные синхронизирующие сигналы (timing signals), управляющие пересылкой, генерируются управляющими схемами. Синхронизи­рующие сигналы - это сигналы, определяющие, когда должно быть выполнено данное действие. Кроме того, посредством синхронизирующих сигналов, генери­руемых блоком управления, осуществляется передача данных между процессором и памятью. Блок управления можно представить себе как отдельное устройство, взаимодействующее с другими частями машины. Но на практике так бывает ред­ко. Большая часть управляющих схем физически распределена по разным местам компьютера. Сигналы, используемые для синхронизации событий и действий всех устройств, передаются по множеству управляющих линий (проводов). В целом, функционирование компьютера можно описать следующим образом:


  • Компьютер с помощью блока ввода принимает информацию в виде про­грамм и данных и записывает ее в память.

  • Хранящаяся в памяти информация под управлением программы пересы­лается в арифметико-логическое устройство для дальнейшей обработки.

  • Данные, полученные в результате обработки информации, направляются на устройства вывода.

  • За все действия, производимые внутри машины, отвечает блок управления.
3.2. Основные концепции функционирования

Как было сказано в разделе 3.1, действиями компьютера управляют инструкции. Для выполнения конкретной задачи в память записывается соответствующая программа, состоящая из множества команд. Команды по очереди пересылаются из памяти в процессор, который их выполняет. Данные, используемые в качестве операндов команд, также хранятся в памяти. Вот пример типичной команды:

Эта команда складывает операнд, хранящийся в памяти по адресу LOCA, с операндом, хранящимся в регистре R0 процессора, и помещает результат в этот же регистр. Исходное содержимое памяти по адресу LOCA не меняется, а содер­жимое регистра R0 перезаписывается. Данная команда выполняется в несколько этапов. Сначала она пересылается из памяти в процессор. Затем операнд коман­ды считывается из памяти по адресу LOCA и складывается с содержимым регист­ра R0, после чего результирующая сумма записывается в регистр R0.

В описанной команде Add объединяются две операции: доступ к памяти и опе­рация АЛУ. Во многих современных компьютерах эти два типа операций выпол­няются с помощью отдельных команд. Такое разделение основывается на сообра­жениях производительности, о которых мы поговорим ниже. Приведенная выше команда может быть реализована и в виде двух команд:

1) Load R3,LOCA для Intel Architecture (IA-32): mov bx,loca

Add R0,R3 add ax,bx

Первая из этих команд копирует содержимое памяти по адресу LOCA в ре­гистр процессора R1, а вторая команда складывает содержимое регистров R1 и R0 и помещает сумму в регистр R0. Обратите внимание, что в результате выполне­ния двух команд исходное содержимое обоих регистров уничтожается, а содер­жимое памяти по адресу LOCA сохраняется.

Пересылка данных между памятью и процессором начинается с отправки в уст­ройство памяти адреса слова, к которому требуется получить доступ, и выдачи соответствующих управляющих сигналов. Затем данные пересылаются в память или из памяти.

На рис. 3.2 показано, как соединяются между собой память и процессор. Кро­ме того, рисунок иллюстрирует несколько важных особенностей функционирова­ния процессора, о которых мы с вами еще не говорили. На нем не показана реаль­ная схема соединений этих компонентов, поскольку пока мы обсуждаем только их функциональные характеристики. Более детально соединение компонентов описывается в разделе 8 при рассмотрении конструкции процессора.

Кроме АЛУ и управляющих схем процессор содержит множество регистров, предназначенных для разных целей. В регистре команды (Instruction Register, IR) содержится код выполняемой в данный момент команды. Ее результат доступен управляющим схемам, которые генерируют сигналы для управления различными элементами, участвующими в выполнении команды. Еще один специализирован­ный регистр, называемый счетчиком команд (Program Counter, PC), служит для контроля за ходом выполнения программы. В нем содержится адрес следующей команды, подлежащей выборке и выполнению. Пока выполняется очередная ко­манда, содержимое регистра PC обновляется - в него записывается адрес следую­щей команды. Говорят, что регистр PC указывает на команду, которая должна быть выбрана из памяти. Кроме регистров IR и PC на рис. 3.2 показано n регистров общего назначения, от R0 до R„-i. Для чего они нужны, объясняется в главе 2.

Наконец, еще два регистра обеспечивают взаимодействие с памятью. Это ре­гистр адреса (Memory Address Register, MAR) и регистр данных (Memory Data Register, MDR). В регистре MAR содержится адрес, по которому производится обращение к памяти, а в регистре MDR - данные, которые должны быть записа­ны в память или прочитаны из таковой по этому адресу.

Рассмотрим типичный процесс выполнения программы компьютером. Про­грамма располагается в памяти, куда обычно попадает через входное устройство. Ее выполнение начинается с записи в регистр PC адреса первой команды. Содер­жимое этого регистра пересылается в регистр MAR, а в память направляется управляющий сигнал Read. Когда истекает время, необходимое для доступа к па­мяти, адресуемое слово (в данном случае - первая команда программы) считыва­ется из памяти и загружается в регистр MDR. Затем содержимое регистра MDR пересылается в регистр IR. Команда готова к декодированию и выполнению.

Если команда требует, чтобы АЛУ выполнило определенную операцию, для нее необходимо получить операнды. Операнд, располагающийся в памяти (он может находиться и в регистре общего назначения), нужно сначала из таковой извлечь, переслав его адрес в регистр MAR и инициализировав цикл Read. После пересыл­ки из памяти в регистр MDR операнд будет направлен в АЛУ. Аналогичным обра­зом туда же будут переданы и остальные необходимые команде операнды, после чего АЛУ сможет выполнить требуемую операцию. Если результат должен быть сохранен в памяти, он будет записан в регистр MDR. Затем адрес, по которому его нужно записать в память, будет помещен в регистр MAR, после чего будет иниции­рован цикл Write. В какой-то момент в ходе выполнения текущей инструкции со­держимое регистра PC увеличивается, и он начинает указывать на следующую подлежащую выполнению инструкцию. Другими словами, как только завершится выполнение текущей инструкции, можно будет приступать к выборке следующей.

Рис. 3.2. Соединения между процессором и памятью

Компьютер не только пересылает данные между памятью и процессором, но и принимает их от входных устройств, а также отсылает выходным устройствам. Поэтому среди машинных команд имеются и команды для выполнения операций ввода-вывода.

Если возникает необходимость срочно обслужить некоторое устройство (на­пример, когда устройство мониторинга в автоматизированном промышленном процессе обнаружит опасную ситуацию), нормальное выполнение программы может быть прервано. Для того чтобы немедленно отреагировать на эту ситуа­цию, компьютер должен прервать выполнение текущей программы. С этой целью устройство генерирует сигнал прерывания. Прерывание (interrupt) - это запрос, поступающий от устройства ввода-вывода, с требованием предоставить ему про­цессорное время. Для обслуживания этого устройства процессор выполняет соот­ветствующую программу обработки прерывания. А поскольку ее выполнение мо­жет изменить внутреннее состояние процессора, перед обслуживанием прерыва­ния нужно сохранить его состояние в памяти. Обычно в ходе этой операции сохраняется содержимое регистра PC, регистров общего назначения и некоторая управляющая информация. По завершении работы программы обработки преры­вания состояние процессора восстанавливается и прерванная программа продол­жает свою работу. Процессор со всеми его элементами (рис. 3.2) обычно реализует­ся в виде одной микросхемы, на которой располагается как минимум одно устрой­ство кэш-памяти. Такие чипы называются VLSI (VLSI - аббревиатура от Very Large Scale Integration, что переводится как очень крупномасштабная интеграция).