Билайн

Генераторы шума. In The Pink! Сведение с розовым шумом в качестве референса

Белый шум - это звук, который вы слышите, когда телевизор настроен на частоту несуществующей станции. Его спектральная плотность растет с крутизной 3 дБ/октава, поэтому белый шум не годится в качестве источника для тестирования аудиоаппаратуры. Если же объединить источник белого шума и фильтр с крутизной спада 3 дБ/октава, можно получить очень хорошее приближение к «настоящему» розовому шуму, когда мощность в пределах каждой октавы будет одинакова. Например, мощность в полосе частот 40…80 Гц будет равна мощности в полосе частот 10…20 кГц.

В показанной на рис. 1 схеме фильтр сделан на недорогом ОУ типа . Нет никаких оснований использовать дорогие малошумящие усилители в схеме, которая предназначена для того, чтобы шуметь.

Рисунок 1.

Смещенный в обратном направлении базо-эмиттерный переход транзистора BC548 шумит как хороший стабилитрон. При указанных на схеме номиналах, среднее шумовое напряжение в полосе частот равно 30 мВ. «Транзисторные стабилитроны» не слишком надежны, в том смысле, что напряжение пробоя у них может варьировать, в зависимости от экземпляра, от 5 до 10 В, хотя обычно пробивное напряжение транзисторов находится где-то около 9 В. Иногда обнаруживается, что транзистор шумит очень слабо. В таком случае, надо просто взять другой.

Первый каскад ОУ выполняет роль буферного усилителя с очень высоким входным сопротивлением, чтобы не нагружать источник шума. Усиление буферного каскада равно 11 (20.8 дБ). Постоянное напряжение на выходе буферного усилителя должно быть таким же (или отличаться совсем ненамного), как на «транзисторном стабилитроне».

Вывод 8 ОУ подключается к положительному полюсу батареи, вывод 4 - к отрицательному. Не перепутайте, а то погубите усилитель.

Маркированные буквами «NP» конденсаторы - электролитические, неполярные. Можно было бы применить и пленочные, но они дороговаты для проекта, который мы решили сделать дешевым. А конденсаторы нужны именно неполярные, из-за непредсказуемого знака напряжения на C4 и практически полного отсутствия постоянного смещения на C8.

Второй каскад усилителя - это как раз фильтр с линейным спадом 3 дБ/октава в полосе частот 20 Гц…20 кГц. Фильтр превращает белый шум в розовый, обеспечивая постоянство энергии в каждой из 10 октав звукового диапазона.

Из за высокого пробивного напряжения «транзисторного стабилитрона», напряжение питания приходится делать достаточно высоким. Мы используем две стандартные батарейки по 9 В, включенные последовательно так, что суммарное напряжение равно 18 В. Светодиодную индикацию мы намеренно исключили из схемы, так как один светодиод потребляет тока больше, чем вся остальная схема.
Выключатель питания должен быть двухполюсным, чтобы отключать обе батареи. Средняя точка батарей является «землей» схемы.

Схему можно собрать на куске макетной платы и поместить в подходящий пластмассовый или металлический корпус. Номиналы компонентов некритичны, поэтому вполне подойдут резисторы и конденсаторы с допуском 5%. Использование металлопленочных 1% резисторов для снижения уровня шума в этой схеме лишено всякого смысла. Транзисторы используйте маломощные, любые, какие есть под рукой. Сдвоенный ОУ (или два одиночных) тоже могут выбираться практически произвольно, лишь бы они подходили по напряжению питания. Но не забывайте, что не у всех микросхем цоколевки совпадают.

Если у вас есть осциллограф, или есть, у кого его взять на время, убедитесь, что шумовой сигнал не обрезается усилителями. На слух это не определить, а отсечка искажает энергетический спектр сигнала, и шум перестает быть розовым. Если отсечка обнаружена, или у вас есть подозрение, что она существует, увеличьте номиналы резисторов R3 или R4 (любого, но не обоих сразу). Увеличение номинала вдвое уменьшает выходное напряжение наполовину.

В принципе, существуют цифровые генераторы «псевдо случайного» шума, но мне они не нравятся, так обладают цикличностью, очень заметной на слух. В нашей же схеме шум на самом деле случайный.


Рисунок 2.

На Рисунке 2 показана передаточная характеристика фильтра с наклоном -3 дБ/октава. Она не вполне совершенна, но идеальных фильтров я никогда и не встречал. А того, что получилось, более чем достаточно для большинства целей. Небольшой спад на низких частотах, обусловленный конденсатором C7 и выходным конденсатором фильтра, реально чуть больше, чем изображено на графике, но ошибка не превышает 1 дБ во всем диапазоне звуковых частот.

Использование генератора шума

Подключите генератор к предусилителю и постепенно увеличивайте громкость до уровня спокойной речи. Это будет примерно 65 дБ. Внимательно слушайте, стараясь обнаружить какие-то особенности звука, как например, низкий шум, или наличие точек, в которых сигнал исчезает, или же что-то, что просто не похоже на чистый шум. Вероятно, вам придется немного попрактиковаться в этом занятии. Если у вас есть графический эквалайзер, вам будет проще понять, как влияют на звук пики и провалы частотной характеристики.

Попробуйте прослушать сигнал генератора в хороших наушниках, а затем через акустическую систему в комнате, и сравнить результаты. Возможно, они удивят вас.

Для того чтобы добывать информацию, можно использовать множество средств. Самыми эффективными сегодня являются различные технические миниатюрные устройства, которые можно легко и скрытно установить где угодно, прослушивая или подглядывая за происходящим.

Такие средства используются как со стороны разведки и правоохранительных органов, так и в криминальных структурах. Применяют их иногда частные лица и бизнесмены.

Чтобы испортить слежку злоумышленникам, можно воспользоваться специальным электронным устройством под названием генератор шума (ГШ). Он создает помехи рядом с местами, где необходимо подавить возможные сигналы слежки недоброжелателей.

Существует для этого несколько методов.

Экранирование

Для радиолюбителя такой способ является наиболее простым, предназначенным для защиты от утечки важной конфиденциальной информации. В этом варианте шум образуют через электромагнитное экранирование. За счет источника электромагнитной энергии на экране появляются заряды, а на стенках — токи, у которых поля подобны полю источника, но направление — противоположно. Поэтому происходит компенсация. Для простого электромагнитного экранирования можно воспользоваться подручными материалами.

Что нужно для простого экранирования

Даже неискушенный в вопросах радиоэлектроники радиолюбитель легко поймет, о чем идет речь, и достанет все нижеприведенные материалы, в число которых входят:

  • металлические, в том числе и фольга;
  • для металлизации поверхностей;
  • ткани;
  • стекла с покрытием, проводящим ток;
  • радиопоглощающие;
  • клей, проводящий электричество.

С помощью этих средств получают замкнутый экран, который заземляется.

Кроме применения в доме, экранирование используют и в автомобилях. Чтобы устройство здесь работало эффективно, нужно учитывать окна. Поэтому экранирование должно рассчитываться эквивалентно экрану из стекла. Для этого может применяться вкрапление сетки из металла в стекло или использоваться специальные стекла с покрытием, проводящим ток. Для того чтобы нанести это покрытие, используют специальные устройства магнетронного напыления.

Как работает прибор?

Далеко не все средства, эффективно показывающие себя в помещении, подходят для автомобилей. Примером могут служить микрофоны, снабженные приспособлениями для передачи данных в ИК-диапазоне. Для них потребуется тончайшая настройка, которую в полевых условиях выполнить крайне сложно. Кроме того, должны отсутствовать помехи в направлении луча, что на улице реализовать почти невозможно.

По аналогичным причинам не подойдут и лазерные микрофоны. Остаются стетоскопы, диктофоны и навязывание на высоких частотах, реализуемые по радиоканалу.

Самый популярный генератор шума образует белые или розовые шумы. Чтобы разобрать речь, диапазон разбивают на полосы с одинаковым коэффициентом. Если используемая система — непрофессиональная, то имеется семь полос октав. Если разборчивость составляет от тридцати до восьмидесяти процентов, то погрешность будет до двух процентов для помехи речеподобной, до пяти процентов для розового и белого шумов, а также порядка пятнадцати процентов для спадающего шума, имеющего плотность шесть децибел на высокочастотную сторону октавы.

Эффективность защиты информации, передаваемой в речи, зависит от поставленных целей. Например, необходимо скрыть смысл или тему разговора.

Что услышит проводящий слежку?

Речь, при наличии шума, будет восприниматься с потерями частей сообщений. Так, прослушивая фонограмму, где использовался генератор шума, можно будет констатировать, что разговор был. А вот тему его раскрыть не удастся. Проведенные опыты показали, что разборчивость падала примерно на шестьдесят-семьдесят процентов, а при коротком содержании — до сорока-пятидесяти. Понятно, что имея лишь до тридцати процентов понимания речи, установить предмет дискуссии крайне затруднительно.

Опыты показали, что эффективнее всего показывает себя розовый шум, а также речеподобная помеха. Для скрытия разговора необходим генератор шума, осуществляемый помехи на девять децибел. Для белого шума и шума со спадом понадобится десять и тринадцать децибел. Для эффективного действия устройства нужно знать фоновый шум. К примеру, вне салона автомобиля он равен от тридцати до тридцати пяти децибел. Тогда среднее звукоизоляционное значение должно равняться тридцати децибелам.

Белые генераторы шума: схема

Эффективными себя показали акустически-вибрационные средства зашумления. При этом они недорого стоят и легко устанавливаются. Генератор шума работает в акустическом частотном диапазоне, гарантируя снижение разборчивости после записи. Наиболее простым методом белого шума является применение шумящих электронных деталей, которые способствуют усилению напряжения.

Принцип действия приборов заключается в излучении ультразвуковых колебаний, которые не слышатся ухом человека. Дело в том, что люди воспринимают звуки в линейном диапазоне, а микрофон на диктофоне не является линейной деталью. Поэтому на входе устройства возникает интерференция, приводящая к подавлению записи. Так как уровень колебаний ультразвука составляет от восьмидесяти до ста децибел, то он может без вреда для здоровья использоваться и в помещениях, и в транспорте.

«Гном»

Генератор шума «Гном» - одно из устройств, борющихся с побочными электромагнитными излучениями. Выпускалось несколько моделей прибора. Сначала они были громоздкими, а затем уменьшались в размере, оставаясь такими же эффективными. Разработка «Гном 5» является примером компактного и удобного устройства, находящегося под рукой. Принцип действия прибора реализуется в работе с персональным компьютером, защищая его от утечки информации. Размещается устройство в системном блоке.

Наряду со шпионской техникой существуют и специальные устройства для защиты информации. Но никто, кроме нас самих, не будет использовать их. Только в наших руках находится информационная защита. А реализовывать ее или нет — личное решение каждого.

Предназначен для создания помех в акустическом диапазоне в различных помещениях и в линиях связи. Достаточно простым способом создания белого шума является применение «шумящих» радиоэлектронных элементов (электроламп, стабилитронов, транзисторов, различных диодов) с последующим усилением напряжения шума.

Описание работы простого генератора белого шума

В данной схеме источником шума является полупроводниковый элемент, а именно стабилитрон VD1 (КС168А). Этот стабилитрон функционирует в режиме лавинного пробоя при весьма небольшом токе. Сила тока протекающего сквозь данный стабилитрон равна всего-навсего около 100 мкА.

Электронный шум, как ценный сигнал, принимается с катода стабилитрона VD1 и сквозь неполярный конденсатор С1 идет на инвертирующий вход 2 DA1 операционного усилителя (КР140УД1208). С делителя напряжения состоящего из резисторов R2 и R3 напряжение смещения поступает на другой вход 3 DA1 этого же усилителя.

Порядок работы микросхемы DA1 обусловливается сопротивлением резистора R5, а коэффициент усиления сопротивлением резистором R4. Нагрузкой усилителя DA1 является переменный резистор R6. С него выделенный сигнал идет на усилитель мощности DA2, построенный на микросхеме К174ХА10.

Усиленный сигнал с выхода DA2 через полярный конденсатор С4 идет на малогабаритную динамическую головку В1. Степень шума регулируется переменным резистором R6. Стабилитрон VD1 создает шум в большом диапазоне частот от нескольких герц до нескольких десятков мегагерц. Тем не менее, практически он ограничен АЧХ операционного усилителя и динамической головкой воспроизводящей сигнал.

Детали генератора

Стабилитрон VD1 можно применить любой с напряжением стабилизации меньше чем источник питания схемы. Из имеющихся стабилитронов необходимо выбрать тот, который имеет наибольший уровень шума. Усилитель DA1 возможно поменять на микросхему КР1407УД2 или любой другой операционный усилитель с наивысшей частотой коэффициента усиления. Взамен микросхемы на DA2 можно поставить любую другую микросхему УЗЧ.

Шумовым сигналом называется совокупность одновременно существующих электрических колебаний, частбты и амплитуды которых носят случайный характер. Типичным примером шумового сигнала являются электрические флуктуации. Генераторы шума вырабатывают шумовые измерительные радиотехнические сигналы с нормированными статистическими характеристиками.

Генераторы шума применяются в качестве источников флуктуационных помех при исследовании предельной чувствительности радиоприемных и усилительных устройств, в качестве калиброванных источников мощности при измерении напряженности поля или шумов внеземного происхождения, в качестве имитаторов полного сигнала многоканальной аппаратуры связи, для измерения нелинейных искажений и частотных характеристик радиоустройств с- помощью анализатора спектра с постоянной полосой пропускания.

Рис. 4-19. Упрощенная структурная схема генератора шумовых сигналов

Основным требованием к генераторам шума является равномерность спектрального состава шумового сигнала в возможно большей полосе частот, от до («белый» шум), а практически - от единиц герц до десятков гигагерц. Такой измерительный сигнал позволяет исследовать устройство или систему одновременно во всем диапазоне рабочих частот. В реальных генераторах «белый» шум получить невозможно, по для любого устройства, полоса пропускания которого во много раз меньше спектра шумового сигнала, последний можно считать «белым».

По диапазону генерируемых частот генераторы шума делятся на низкочастотные (20 Гц - 20 кГц и 15 Гц - 6,5 МГц); высокочастотные сверхвысокочастотные (500 МГц - 12 ГГц).

Обобщенная структурная схема генератора шума (рис. 4-19) состоит из источника шума ИШ, широкополосного усилителя и аттенюатора Измеритель выхода ИВ позволяет контролировать уровень выходного сигнала в единицах напряжения (иа низких частотах) или в единицах спектральной плотности мощности шума. К источнику шума предъявляются следующие требования: равномерность спектральной плотности мощности в заданной полосе частот; достаточное выходное напряжение (мощность) шумового сигнала; неизменность и воспроизводимость характеристик шума во времени и при изменении внешних влияний; заменяемость после истечения гарантийного срока работы без нарушения выходных параметров генератора. Наибольшее распространение в качестве источников шума получили резисторы, вакуумные

и полупроводниковые дноды, фотоэлектронные умножители и газоразрядные лампы.

Шум, возникающий в резисторе, обусловлен хаотическим тепловым движением электронов, которое прекращается только при абсолютном нуле. Среднеквадратическое значение напряжения шумового сигнала резистора Определяется еледующей формулой:

где постоянная Больцмана; температура, сопротивление резистора, Ом, при нормальной температуре эквивалентная полоса пропускания, в которой определяется напряжение, Гц.

Если нагрузить шумящий резистор другим, равным ему по сопротивлению, то на втором резисторе выделится мощность

Отсюда можно определить спектральную плотность мощности шума

Спектральная плотность мощности шума резистора при нормальной температуре равна Произведение удобно использовать в качестве единицы спектральной плотности мощности. Например, означает, что температура шумящего резистора в пять раз выше нормальной и спектральная плотность равна

Из выражения можно найти сопротивление резистора: отсюда следует, что активные элементы, в которых возникают шумы, можно замещать эквивалентным шумящим резистором, шумовое сопротивление которого при нормальной температуре равно:

Вакуумный диод, работающий в режиме насыщения, является источником шума вследствие случайного характера процесса термоэлектронной эмиссии. Среднеквадратическое значение шумового тока диода определяется известным выражением где заряд электрона ток насыщения, полоса пропускания устройства, на вход которого поступает ток насыщения диода, Гц. Вакуумные диоды, например типа генерируют шум в диапазоне частот Напряжение и уровень спектральной плотности мощности на выходе генератора регулируется изменением тока накала диода.

В качестве источника шума широко используются полупроводниковые диоды; низкочастотные и высокочастотные, работающие в диапазоне 20 Гц - 20 кГц и 60-80 МГц соответственно. Последние часто используются и в низкочастотных генераторах шума (путем гетеродинного переноса частот).

Газоразрядные трубки являются источниками шума в диапазоне сверхвысоких частот - от до Шум обусловлен беспорядочным движением электронов в ионизированном газе (плазме). Под влиянием приложенного электрического поля они движутся с высокой скоростью, поэтому мощность шума достигает относительно больших значений. Спектральная плотность мощности равна где - «электронная температура», зависящая от состава газа и его давления. Значение достигает нескольких десятков тысяч кельвинов.

Рассмотрим особенности построения генераторов шумовых сигналов в зависимости от диапазона частот.

Низкочастотный генератор шума строится по схеме прямого усиления шумовых сигналов, получаемых от полупроводникового диода в диапазоне Усиление сигнала осуществляется транзисторным усилителями, между которыми сключепы полосовые фильтры, формирующие поддиапазоны частот 250-3500 Гц и 40-12 000 Гц. Выходной усилитель мощности с переключаемой обратной связью обеспечивает выход сигнала на нагрузки 6, 60 и 600 Ом. Предусмотрен ступенчатый аттенюатор до и вольтметр, шкала которого проградуирована в среднеквадратических значениях напряжения. Неравномерность спектра «белого» шума не более

Низкочастотный генератор шума работающий в диапазоне видеочастот (15 Гц - 6,5 МГц), строится на принципе переноса спектра источника шума из области высоких частот в рабочий диапазон методом гетеродииироваиия. Источник шума - полупроводниковый диод вырабатывает шум в диапазоне частот до

Рис. 4-20. Генератор шумовых сигналов на вакуумном диоде: а - схема; конструкция

Полосовой усилитель с полосой соединен со смесителем, на второй вход которого подано напряжение гетеродина, работающего на частоте . В результате на выходе смесителя получаются два сигнала разностных частот, лежащих выше и ниже частоты гетеродина. Частотный диапазон каждого из них Оба сигнала суммируются и поступают на фильтры нижних частот, формирующие рабочие полосы поддиапазонов или Низкочастотные составляющие Гц подавляются в последующем видеоусилителе, с выхода которого сигнал поступает на ступенчатый аттенюатор и вольтметр. Выходное сопротивление 50 и 600 Ом. Выходное напряжение регулируется в пределах плавно и ступенями через при внешней нагрузке не менее

Высокочастотный генератор шума работает на насыщенном вакуумном диоде типа (рис. 4-20), заключенном в коаксиальную конструкцию, оканчивающуюся разъемом для соединения с нагрузкой. Этот генераторный блок соединен экранированными проводами с блоком питания и управления, в котором размещены стабилизированные источники питания цепи накала и цепи анода диода модулирующий генератор и миллиамперметр, шкала которого градуируется в единицах

Мощность шума диода где сопротивление резистора нагрузки диода, тепловым шумом которого можно пренебречь. Отсюда следует, что спектральная плотность мощности прямо пропорциональна току эмиссии диода:

Пределы регулирования реостатом накала диода выходной спектральной плотности мощности При необходимости уменьшения спектральной плотности между выходом генератора и входом исследуемого устройства включают аттенюаторы коаксиальной конструкции с одним значением ослабления. Выходное сопротивление генератора определяется диаметрами коаксиального разъема и в большинстве случаев равно 75 Ом.

Сверхвысокочастотные генераторы шумовых сигналов работают на газоразрядных трубках. Для частот от до это генераторы коаксиальной конструкции и с коаксиальными выходными разъемами, для частот выше волноводной конструкции. Генератор коаксиальной конструкции (рис. 4-21, а) представляет собой цилиндрическую металлическую камеру, в центре которой помещается газоразрядная трубка. Вокруг трубки располагается металлическая спираль, охватывающая столб плазмы и являющаяся элементом связи горящей трубки с коаксиальной линией.

Рис. 4-21. Генератор шумовых сигналов на газоразрядных трубках 1 - согласующий резистор; 2 - спираль связи; 3 - газоразрядная трубка; 4 - согласующая нагрузка; 5 - предельный волновод

Один конец спирали соединен с поглощающим (согласующим) резистором, второй - с выходным разъемом. Выходное сопротивление генератора определяется волновым сопротивлением коаксиальной линии, т. е. диаметром и шагом спирали, и составляет 50 или 75 Ом. Перекрытие по частоте ие превышает 4; спектральная плотность мощности шума не регулируется и указывается в паспорте генератора в пределах от 20 до Имеются генераторы со вторым выходом через направленный ответвитель; здесь спектральная плотность составляет

Генератор шума волноводной конструкции представляет собой отрезок прямоугольного волновода (рис. 4-21, б) с газоразрядной трубкой, пересекающей его широкую стенку под углом Такое расположение обеспечивает согласование горящей трубки с волноводом. Один конец отрезка волновода оканчивается стандартным фланцем для подключения внешней согласованной нагрузки, а в другом помещена клиновидная внутренняя согласующая нагрузка. Спектральная плотность мощности шума составляет Имеются генераторы со вторым выходом через направленный ответвитель; в этом случае спектральная плотность мощности равна Перекрытие по частоте не более 1,5. Анодный и катодный концы трубки выступают за пределы волновода и могут излучать шумовую мощность и создавать помехи. Для уменьшения этих помех концы трубки экранируются предельными волноводами,

В качестве образцовых генераторов шума в диапазоне СВЧ применяют тепловые генераторы, работающие при высокой или низкой

температуре. Источник шума представляет собой стержневой или клиновидный резистор, помещенный в коаксиальную или волноводиую линию, нагреваемый до 460 °С (733 К). При такой температуре спектральная плотность мощности составляет Для обеспечения постоянства температуры резистора применяется термостат с автоматическим управлением. В низкотемпературном генераторе резистор погружается в жидкий азот или гелий; спектральная плотность мощности азотного генератора гелиевого

Полупроводниковый генератор шума - это диод, который в определенном режиме работы может использоваться как источник шумов в определенном диапазоне частот.

Принцип действия генераторов шума основан на свойствах лавинного пробоя перехода диода. В начальной стадии лавинного пробоя процесс ударной ионизации оказывается неустойчивым: ударная ионизация возникает, срывается, возникает вновь в тех местах перехода, где оказывается в данный момент достаточная напряженность электрического поля. Результатом случайной неравномерности генерации новых носителей заряда при ударной ионизации являются шумы, которые характерны для определенного диапазона токов. При работе таких, например, приборов как стабилитроны, шумы - явление вредное. Именно поэтому диапазон токов, соответствующий шумам, исключают из диапазона рабочих токов стабилитронов.

Таким образом, в качестве генераторов шума можно использовать обратносмещенные диоды в диапазоне обратных токов от минимального (\(I_{проб min}\)) до максимального (\(I_{проб max}\)) пробивного тока, где наблюдается наибольшая интенсивность электрических флуктуаций.

Параметры генераторов шума во многом схожи с параметрами стабилитронов. Наиболее специфичными являются три характеристики, описывающие свойства генерируемого приборами шумового сигнала и его зависимость от колебаний температуры прибора.

Спектральная плотность шума (\(S_ш\)). Из теории сигналов известно, что спектральная плотность является одной из важнейших характеристик любого сигнала. Для измерительных целей чаще всего необходим т.н. “белый шум”, у такого сигнала спектральная плотность при всех частотах постоянна. Полупроводниковые генераторы шума позволяют получить такую характеристику в определенном диапазоне частот. Параметр спектральной плотности шума (\(S_ш\)) полупроводникового прибора выражается как эффективное значение напряжения шума, отнесенное к полосе в 1 Гц, при заданном токе пробоя и в определенном диапазоне частот. В полупроводниковых генераторов шума и наиболее распространенных стабилитронах значения \(S_ш\) лежат в пределах 3...30 .

Граничная частота равномерности спектра (\(f_{гр}\)). В реальных полупроводниковых генераторах шума спектральная плотность генерируемых шумов постоянна только в определенном диапазоне частот. С увеличением частоты ее значение постепенно понижается. Наибольшая частота спектра, при которой отрицательное отклонение спектральной плотности шумов не превышает заданное значение (при заданном токе пробоя), называется граничной частотой равномерности спектра (\(f_{гр}\)). В типовых приборах значение \(f_{гр}\) лежит в пределах 1...4 МГц.

Средний температурный коэффициент спектральной плотности шума (\(\alpha_{S_ш}\)). Обратный ток, предшествующий лавинному пробою, и пробивное напряжение при лавинном пробое увеличиваются с ростом температуры. В результате участок ВАХ, соответствующий наибольшей интенсивности шумов, смещается с изменением температуры в область больших токов и напряжений. Т.е. при стабильном токовом режиме с изменением температуры будет изменяться и спектральная плотность генерируемых шумов. Такое изменение характеризуется специальным коэффициентом, называемым температурным коэффициентом спектральной плотности шума (\(\alpha_{S_ш}\)). Он выражается как отношение относительного изменения спектральной плотности шума в заданном диапазоне рабочих температур к абсолютному изменению температуры окружающей среды при постоянном токе. Знак и значение температурного коэффициента спектральной плотности шума могут быть различными при разных токах.