Мегафон

Графические языки программирования для arduino. FLProg — система визуального программирования для Arduino. Что такое Ardublock

В последние годы кружки программирования и робототехники стали крайне популярны и доступны даже для учеников начальной школы. Это сделалось возможным благодаря применению графических сред программирования, которые, надо отметить, активно используются и крупными компаниями. Чтобы рассказать о графических средах программирования, мы выбрали три наиболее популярных из них.

Visuino

Visuino - это бесплатная графическая среда, работающая на базе совместимых с Arduino промышленных контроллеров (ПЛК) Controllino. Она дает возможность создания сложных систем автоматизации и решений IoT (Internet of Things, интернета вещей), причем сделать это можно, просто перемещая и соединяя визуальные блоки. Программная среда автоматически генерирует код для промышленных контроллеров.

Итак, что надо сделать. Выбираем компоненты (модули) с панели компонентов и перемещаем их в область проектирования. Затем их необходимо соединить и настроить свойства. Это делается с помощью инспектора объектов.

К плюсам Visuino относится большой набор компонентов для математических и логических функций, сервоприводов, дисплеев, интернета и пр.

Когда ПЛК запрограммирован, графическая среда подсказывает доступный способ подключения к контроллеру. Это может быть последовательный порт, Ethernet, Wi-Fi или GSM.

Наконец ваш проект готов: все контроллеры прописаны, все работает. Теперь, нажав на логотип Arduino, расположенный на верхней панели, вы заставите Visuino создать коды для Arduino и открыть среду его разработки (Arduino IDE), через которую уже можно скомпилировать код и загрузить его в ПЛК.

Совет. Если установленная плата не соответствует вашему Arduino, вы можете изменить ее с помощью команды «Select Board» (Выбрать панель).

Scratch

Эта графическая среда программирования была создана в 2003 году, когда группа сотрудников MIT Media Lab решила разработать язык программирования, доступный абсолютно для всех. В итоге через некоторое время публике был представлен Scratch.

Больше всего, пожалуй, он похож на Lego. По крайней мере, принцип тот же: это объектно ориентированная среда, в которой программы собираются из деталей, разноцветных и ярких. Эти детали можно перемещать, видоизменять, заставлять взаимодействовать различным образом. Основа Scratch - блоки команд, таких как сенсоры, переменные, движение, звук, операторы, внешность, перо, контроль и пр. Встроенный графический редактор дает возможность нарисовать любой объект. Не прошло и пяти лет с момента создания Scratch, как возник проект Scratch для Arduino (сокращённо - S4A), позволяющая программировать ПЛК Arduino.

К плюсам системы относится то, что она русифицирована и полностью локализована - любой желающий найдем множество данных по ней. Кроме того, работа в данной графической среде доступна даже для школьников младших классов, которые даже еще не слишком уверенно читают.

Совет. Для новичков в Scratch существует специальный ресурс: https://scratch-ru.info .

ArduBloсk

Когда человек уже полностью освоил Scratch, но еще не дорос до Wiring, на котором программируются Arduino-совместимые платы, самое время посоветовать ему написанный на Java инструмент ArduBloсk. Особенно хорош он для тех, кто увлекается робототехникой.

В чем же разница? Дело в том, что Scratch не умеет прошивать Arduino, он лишь управляет его ПЛК через USB. Таким образом, Arduino не может работать сам по себе, ведь он зависит от компьютера.

По сути, ArduBloсk - это промежуточный этап между детской Scratch и вполне профессиональной, хоть и доступной Visuino, поскольку так же, как последняя, обладает возможностью перепрошивки Arduino-совместимых контроллеров.

Совет. Не забудьте установить на свой ПК Java-машину . Это не займет много времени.

Итак, больше графических сред - хороших и разных. Да пребудет с вами Arduino.

Фото: компании-производители, pixabay.com

28 09.2016

Вы задумывались облегчить себе жизнь в быту? Чтобы были вещи, которые решали бы за вас повседневные, рутинные задачи. Умное устройство, которое бы осуществляло полезную функцию, например поливало огород, убирало комнату, переносило груз. Эти задачи может решать . Но просто купить её будет недостаточно. Любому промышленному логическому контроллеру или микросхеме нужен “мозг”, чтобы выполнять определённую последовательность действий. Для свершений операций в нашем случае подойдёт язык программирования ардуино.

Из этой статьи вы узнаете:

Приветствую вас, друзья! Для тех, кто меня не знает — меня зовут Гридин Семён. Вы можете прочитать обо мне . Сегодняшняя статья будет посвящена двум основным программам, без которых не будет у нас дальнейшего движения и взаимопонимания.

Общее описание языков программирования

Как я и писал выше, рассматривать мы с вами будем две популярные среды разработки. По аналогии с , можно разделить на графический редактор и “умный блокнот”. Это программы Arduino IDE и FLprog.

Основой среды разработки является Processing/Wiring — это обычный C++, дополненный функциями и различными библиотеками. Существует несколько версий для операционных систем windows, Mac OS и Linux.

В чём их принципиальное различие?? Arduino IDE — это среда разработки, в которой описывается код программы. А FLprog похож на CFC CoDeSyS, позволяющий рисовать диаграммы. Какая среда лучше? Обе хороши и удобны по своему, но если хотите заниматься контроллерами серьёзно, лучше всего изучить языки, похожие на СИ. Их главный плюс в гибкости и неограниченности алгоритма. Мне очень нравится Arduino IDE.

Описание Arduino IDE

Дистрибутив можно скачать на официальном сайте . Скачиваем архив, он занимает чуть более 100 мб. Установка стандартная, как и все приложения для Windows. Драйвера для всех типов плат должны быть установлены в пакете. И вот каким образом выглядит рабочее окно программы.

Среда разработки Arduino состоит из:

  • редактора программного кода;
  • области сообщений;
  • окна вывода текста;
  • панели инструментов с кнопками часто используемых команд;
  • нескольких меню

Настройки Arduino IDE

Программа, написанная в среде разработки Arduino, называется скетчем . Скетч пишется в текстовом редакторе, который имеет цветовую подсветку создаваемого программного кода. Пример простенькой программы на картинке ниже.

Дополнительная функциональность может быть добавлена с помощью библиотек, представляющих собой оформленный специальным образом код. В основном он находится в закрытом от разработчика доступе. Среда обычно поставляется со стандартным набором, который можно постепенно пополнять. Они находятся в подкаталоге libraries каталога Arduino.

Многие библиотеки снабжаются примерами, расположенными в папке example. Выбор библиотеки в меню приведет к добавлению в исходный код строчки:

Arduino

#include

#include

Это директива — некая инструкция, заголовочный файл с описанием объектов, функций, и констант библиотеки. Многие функции уже разработаны для большинства типовых задач. Поверьте, это облегчает жизнь программисту.

После того как мы подключили электронную плату к компьютеру. Мы осуществляем следующие настройки — выбираем плату Arduino и Com-порт по которому будем соединяться.

Arduino

void setup() { // initialize digital pin 13 as an output. pinMode(13, OUTPUT); } void loop() { digitalWrite(13, HIGH); delay(1000); digitalWrite(13, LOW); delay(1000);

void setup () {

// initialize digital pin 13 as an output.

pinMode (13 , OUTPUT ) ;

void loop () {

digitalWrite (13 , HIGH ) ;

delay (1000 ) ;

digitalWrite (13 , LOW ) ;

delay (1000 ) ;

Так, кстати говоря, удобно проверять работоспособность платы, пришедшей с магазина. Быстро и легко.

Есть ещё одна удобная вещь. Называется она Монитор последовательного порта (Serial Monitor ). Отображает данные, посылаемые в платформу Arduino. Я обычно смотрю, какие сигналы выдают мне различные датчики, подключённые к плате.

Подключение библиотек

Существуют разные способы для добавления пользовательских функции. Подключить библиотеки можно тремя способами:

  1. С помощью Library Manager
  2. С помощью импорта в виде файла.zip
  3. Установка вручную.

1. С помощью Library Manager. В рабочем окне программы выбираем вкладку Скетч. После этого нажимаем на кнопку Подключить библиотеку. Перед нами откроется менеджер библиотек. В окне будут отображаться уже установленные файлы с подписью installed, и те, которые можно установить.

2.С помощью импорта в виде файла.zip. Часто в просторах интернета можно встретить запакованные в архивы файлы библиотек с расширением zip. В нём содержится заголовочный файл.h и файл кода.cpp. При установке не нужно распаковывать архив. Достаточно в меню Скетч — Подключить библиотеку — Add .ZIP library

3.Установка вручную. Сначала закрываем программу Arduino IDE. Наш архив мы сначала распаковываем. И файлы с расширением.h и.cpp переносим в папку с тем же названием, как и архив. Закидываем папку в корневой каталог.

Мои документы\Arduino\libraries

Описание FLPprog

FLprog — это бесплатный проект независимых разработчиков, позволяющий работать с функциональными блоками, либо с релейными диаграммами. Эта среда удобна для людей — не программистов. Она позволяет визуально и наглядно видеть алгоритм при помощи диаграмм и функциональных блоков. Скачать дистрибутив можно на официальном сайте .

Я наблюдаю за проектом достаточно давно. Ребята развиваются, постоянно добавляют новый функционал и изменяют старый. Я вижу в этой среде перспективы. Так как она выполняет две важные функции: простоту и удобство использования .

Попробуем с вами создать простенький проект. Будем переключать 13 выход на светодиод.

Создаём новый проект. В верхнем окне добавляем нужное количество входов и выходов, задаём имя и присваиваем физический вход или выход платы.

Вытаскиваем нужные нам элементы из дерева объектов нужные нам элементы на холст редактирования. В нашем случае можно использовать простой RS-триггер для включения и выключения.

После создания алгоритма, кликнем на кнопочку компилировать, программа даёт готовый скетч на IDE.

Мы с вами рассмотрели возможности и удобства программ для разработки алгоритмов на контроллере серии Arduino. Есть ещё программы, которые позволяют создавать структурные диаграммы и визуальные картинки. Но я рекомендую использовать текстовый редактор, потому что потом вам будет проще. Скажите, а какая среда вам удобнее всего и почему??

22 сентября я участвовал в Краснодаре на семинаре “Сенсорные панельные контроллеры ОВЕН СПК”. Проводили конференцию в фешенебельном и красивом отеле “Бристоль”. Было очень интересно и круто.

В первой части семинара нам рассказывали о возможностях и преимуществах продукции компании ОВЕН. После был кофе-брейк с пончиками. Я понабрал кучу всего, и пончиков, и печенья, и конфет, так как был очень голодным.=)

Во второй части семинара после обеда нам презентовали . Много чего рассказали про Web — визуализацию. Эта тенденция начинает набирать обороты. Ну конечно, управлять оборудованием через любой интернет — браузер. Это реально круто. Вот кстати говоря само оборудование в чемоданчике.

Я в ближайшем будущем опубликую серию статей по CoDeSyS 3.5. Так что, если кому интересно подписывайтесь или просто заходите в гости. Буду всегда рад!!!

Кстати чуть не забыл, следующая статья будет о к электронной плате Arduino. Будет интересно, не пропустите.

До встречи, в следующих статьях.

С уважением, Гридин Семён.

Здравствуйте! Я Аликин Александр Сергеевич, педагог дополнительного образования, веду кружки «Робототехника» и «Радиотехника» в ЦДЮТТ г. Лабинска. Хотел бы немного рассказать об упрощенном способе программирования Arduino с помощью программы «ArduBloсk».

Эту программу я ввел в образовательный процесс и восхищен результатом, у детей она пользуется особым спросом, особенно при написании простейших программ или для создания какого-то начального этапа сложных программ. ArduBloсk является графической средой программирования, т. е. все действия выполняются с нарисованными картинками с подписанными действиями на русском языке, что в разы упрощает изучение платформы Arduino. Дети уже со 2-го класса с легкостью осваивают работу с Arduino благодаря этой программе.

Да, кто-то может сказать, что еще существует Scratch и он тоже очень простая графическая среда для программирования Arduino. Но Scratch не прошивает Arduino, а всего лишь управляет им по средством USB кабеля. Arduino зависим от компьютера и не может работать автономно. При создании собственных проектов автономность для Arduino - это главное, особенно при создании роботизированных устройств.

Даже всеми известные роботы LEGO, такие как NXT или EV3 нашим ученикам уже не так интересны с появлением в программировании Arduino программы ArduBloсk. Еще Arduino намного дешевле любых конструкторов LEGO и многие компоненты можно просто взять от старой бытовой электронной техники. Программа ArduBloсk поможет в работе не только начинающим, но и активным пользователям платформы Arduino.

Итак, что же такое ArduBloсk? Как я уже говорил, это графическая среда программирования. Практически полностью переведена на русский язык. Но в ArduBloсk изюминка не только это, но и то, что написанную нами программу ArduBloсk конвертирует в код Arduino IDE. Эта программа встраивается в среду программирования Arduino IDE, т. е. это плагин.

Ниже приведен пример мигающего светодиода и конвертированной программы в Arduino IDE. Вся работа с программой очень проста и разобраться в ней сможет любой школьник.

В результате работы на программе можно не только программировать Arduino, но и изучать непонятные нам команды в текстовом формате Arduino IDE, ну а если же «лень» писать стандартные команды - стоит быстрыми манипуляциями мышкой набросать простенькую программку в ArduBlok, а в Arduino IDE её отладить.

Чтобы установить ArduBlok, необходимо для начала загрузить и установить Arduino IDE с официального сайта Arduino и разобраться с настройками при работе с платой Arduino UNO. Как это сделать описано на том же сайте или же на Амперке , либо посмотреть на просторах YouTube. Ну, а когда со всем этим разобрались, необходимо скачать ArduBlok с официального сайта, вот . Последние версии скачивать не рекомендую, для начинающих они очень сложны, а вот версия от 2013-07-12 - самое то, этот файл там самый популярный.

Затем, скачанный файл переименовываем в ardublock-all и в папке «документы». Создаем следующие папки: Arduino > tools > ArduBlockTool > tool и в последнею кидаем скачанный и переименованный файл. ArduBlok работает на всех операционных системах, даже на Linux, проверял сам лично на XP, Win7, Win8, все примеры для Win7. Установка программы для всех систем одинакова.

Ну, а если проще, я приготовил на Mail-диске 7z архив , распаковав который найдете 2 папки. В одной уже рабочая программа Arduino IDE, а в другой папке содержимое необходимо отправить в папку документы.

Для того, чтобы работать в ArduBlok, необходимо запустить Arduino IDE. После чего заходим во вкладку Инструменты и там находим пункт ArduBlok, нажимаем на него - и вот она, цель наша.

Теперь давайте разберемся с интерфейсом программы. Как вы уже поняли, настроек в ней нет, а вот значков для программирования предостаточно и каждый из них несет за собой команду в текстовом формате Arduino IDE. В новых версиях значков еще больше, поэтому разобраться с ArduBlok последней версии сложно и некоторые из значков не переведены на русский.

В разделе «Управление» мы найдем разнообразные циклы.

В разделе «Порты» мы можем с вами управлять значениями портов, а также подключенными к ним звукоизлучателя, сервомашинки или ультразвукового датчика приближения.

В разделе «Числа/Константы» мы можем с вами выбрать цифровые значения или создать переменную, а вот то что ниже вряд ли будите использовать.

В разделе «Операторы» мы с вами найдем все необходимые операторы сравнения и вычисления.

В разделе «Утилиты» в основном используются значки со временем.

«TinkerKit Bloks»- это раздел для приобретенных датчиков комплекта TinkerKit. Такого комплекта у нас, конечно же, нет, но это не значит, что для других наборов значки не подойдут, даже наоборот - ребятам очень удобно использовать такие значки, как включения светодиода или кнопка. Эти знаки используются практически во всех программах. Но у них есть особенность - при их выборе стоят неверные значки обозначающие порты, поэтому их необходимо удалить и подставить значок из раздела «числа/константы» самый верхний в списке.

«DF Robot» - этот раздел используется при наличии указанных в нем датчиков, они иногда встречаются. И наш сегодняшний пример - не исключение, мы имеем «Регулируемый ИК выключатель» и «Датчик линии». «Датчик линии» отличается от того, что на картинке, так как он от фирмы Амперка. Действия их идентичны, но датчик от Амперки намного лучше, так как в нем имеется регулятор чувствительности.

«Seeedstudio Grove» - датчики этого раздела мной ни разу не использовались, хотя тут только джойстики. В новых версиях этот раздел расширен.

И последний раздел это «Linker Kit». Датчики, представленные в нем, мне не попадались.

Хочется показать пример программы на роботе, двигающемся по полосе. Робот очень прост, как в сборке, так и в приобретении, но обо всем по порядку. Начнем с его приобретения и сборки.

Вот сам набор деталей все было приобретено на сайте Амперка .

  1. AMP-B001 Motor Shield (2 канала, 2 А) 1 890 руб
  2. AMP-B017 Troyka Shield 1 690 руб
  3. AMP-X053 Батарейный отсек 3×2 AA 1 60 руб
  4. AMP-B018 Датчик линии цифровой 2 580 руб
  5. ROB0049 Двухколёсная платформа miniQ 1 1890 руб
  6. SEN0019 Инфракрасный датчик препятствий 1 390 руб
  7. FIT0032 Крепление для инфракрасного датчика препятствий 1 90 руб
  8. A000066 Arduino Uno 1 1150 руб

Для начала соберем колесную платформу и припаяем к двигателям провода.

Затем установим стойки, для крепления платы Arduino UNO, которые были взяты от старой материнской платы ну или иные подобные крепления.

Затем крепим на эти стойки плату Arduino UNO, но один болтик прикрутить не получиться - разъемы мешают. Можно, конечно, их выпаять, но это уже на ваше усмотрение.

Следующим крепим инфракрасный датчик препятствий на его специальное крепление. Обратите внимание, что регулятор чувствительности находиться сверху, это для удобства регулировки.

Теперь устанавливаем цифровые датчики линии, тут придется поискать пару болтиков и 4 гайки к ним Две гайки устанавливаем между самой платформой и датчиком линии, а остальными фиксируем датчики.

Следующим устанавливаем Motor Shield или по другому можно назвать драйвер двигателей. В нашем случае обратите внимание на джампер. Мы не будем использовать отдельное питание для двигателей, поэтому он установлен в этом положение. Нижняя часть заклеивается изолентой, это чтобы не было случайных замыканий от USB разъема Arduino UNO, это на всякий случай.

Сверху Motor Shield устанавливаем Troyka Shield. Он необходим для удобства соединения датчиков. Все используемые нами сенсоры цифровые, поэтому датчики линии подключены к 8 и 9 порту, как их еще называют пины, а инфракрасный датчик препятствий подключен к 12 порту. Обязательно обратите внимание, что нельзя использовать порты 4, 5, 6, 7 так как оны используются Motor Shield для управлением двигателями. Я эти порты даже специально закрасил красным маркером, чтобы ученики разобрались.

Если вы уже обратили внимание, мной была добавлена черная втулка, это на всякий случай, чтобы установленный нами батарейный отсек не вылетел. И наконец, всю конструкцию мы фиксируем обычной резинкой.

Подключения батарейного отсека может быть 2-х видов. Первый подключение проводов к Troyka Shield. Также возможно подпаять штекер питания и подключать уже к самой плате Arduino UNO.

Вот наш робот готов. Перед тем как начать программировать, надо будет изучить, как все работает, а именно:
- Моторы:
Порт 4 и 5 используются для управления одним мотором, а 6 и 7 другим;
Скоростью вращения двигателей мы регулируя ШИМом на портах 5 и 6;
Вперед или назад, подавая сигналы на порты 4 и 7.
- Датчики:
У нас все цифровые, поэтому дают логические сигналы в виде 1 либо 0;
А что бы их отрегулировать, в них предусмотрены специальные регуляторы а при помощи подходящей отвертки их можно откалибровать.

Подробности можно узнать на Амперке . Почему тут? Потому что там очень много информации по работе с Arduino.

Ну что ж, мы, пожалуй, все просмотрели поверхностно, изучили и конечно же собрали робота. Теперь его необходимо запрограммировать, вот она - долгожданная программа!

И программа конвертированная в Arduino IDE:

Void setup() { pinMode(8 , INPUT); pinMode(12 , INPUT); pinMode(9 , INPUT); pinMode(4 , OUTPUT); pinMode(7 , OUTPUT); pinMode(5, OUTPUT); pinMode(6, OUTPUT); } void loop() { if (digitalRead(12)) { if (digitalRead(8)) { if (digitalRead(9)) { digitalWrite(4 , HIGH); analogWrite(5, 255); analogWrite(6, 255); digitalWrite(7 , HIGH); } else { digitalWrite(4 , HIGH); analogWrite(5, 255); analogWrite(6, 50); digitalWrite(7 , LOW); } } else { if (digitalRead(9)) { digitalWrite(4 , LOW); analogWrite(5, 50); analogWrite(6, 255); digitalWrite(7 , HIGH); } else { digitalWrite(4 , HIGH); analogWrite(5, 255); analogWrite(6, 255); digitalWrite(7 , HIGH); } } } else { digitalWrite(4 , HIGH); analogWrite(5, 0); analogWrite(6, 0); digitalWrite(7 , HIGH); } }

В заключении хочу сказать, эта программа просто находка для образования, даже для самообучения она поможет изучить команды Arduino IDE. Самая главная изюминка - это то, что более 50 значков установки, она начинает «глючить». Да, действительно, это изюминка, так как постоянное программирование только на ArduBlok не обучит вас программированию в Arduino IDE. Так называемый «глюк» дает возможность задумываться и стараться запоминать команды для точной отладки программ.

Желаю успехов.

Я рассказал о предыстории появления проекта FLProg. Сейчас я хочу поподробнее рассказать о проекте и его состоянии на сегодняшний день.
Основной целью проекта является включение в круг пользователей плат Arduino людей незнакомых с программированием. Это возможно благодаря опыту промышленного программирования, который накапливался годами производителями промышленных контроллеров.
Проект состоит из двух частей. Первая часть это десктоп приложение FLProg представляющее собой графическую среду программирования плат Arduino. Во вторых, это сайт FLProg.ru , с помощью которого члены сообщества пользователей программы могут пообщаться между собой, узнать последние новости проекта, скачать последнюю версию программы, ну и найти необходимую информацию по работе с приложением.

Начнем по порядку.
Программа FLProg позволяет создавать прошивки для плат Arduino с помощью графических языков FBD и LAD, которые являются стандартом в области программирования промышленных контроллеров.

Описание языка FBD

FBD (Function Block Diagram) - графический язык программирования стандарта МЭК 61131-3. Программа образуется из списка цепей, выполняемых последовательно сверху вниз. При программировании используются наборы библиотечных блоков. Блок (элемент) - это подпрограмма, функция или функциональный блок (И, ИЛИ, НЕ, триггеры, таймеры, счётчики, блоки обработки аналогового сигнала, математические операции и др.). Каждая отдельная цепь представляет собой выражение, составленное графически из отдельных элементов. К выходу блока подключается следующий блок, образуя цепь. Внутри цепи блоки выполняются строго в порядке их соединения. Результат вычисления цепи записывается во внутреннюю переменную либо подается на выход контроллера.


Описание языка LAD

Ladder Diagram (LD, LAD, РКС) - язык релейной (лестничной) логики. Синтаксис языка удобен для замены логических схем, выполненных на релейной технике. Язык ориентирован на инженеров по автоматизации, работающих на промышленных предприятиях. Обеспечивает наглядный интерфейс логики работы контроллера, облегчающий не только задачи собственно программирования и ввода в эксплуатацию, но и быстрый поиск неполадок в подключаемом к контроллеру оборудовании. Программа на языке релейной логики имеет наглядный и интуитивно понятный инженерам-электрикам графический интерфейс, представляющий логические операции, как электрическую цепь с замкнутыми и разомкнутыми контактами. Протекание или отсутствие тока в этой цепи соответствует результату логической операции (истина - если ток течет; ложь - если ток не течет). Основными элементами языка являются контакты, которые можно образно уподобить паре контактов реле или кнопки. Пара контактов отождествляется с логической переменной, а состояние этой пары - со значением переменной. Различаются нормально замкнутые и нормально разомкнутые контактные элементы, которые можно сопоставить с нормально замкнутыми и нормально разомкнутыми кнопками в электрических цепях.


Я немного расширил классический функционал этих языков, добавив функциональные блоки, отвечающие за работу с внешними устройствами. Они являются обертками, над библиотеками, предназначенными для работы с ними.
Проект в FLProg представляет собой набор плат, на каждой, из которой собран законченный модуль общей схемы. Для удобства работы каждая плата имеет наименование и комментарии. Так же каждую плату можно свернуть (для экономии места на рабочей зоне, когда работа над ней закончена), и развернуть. Красный индикатор в наименовании платы указывает на то, что в схеме платы есть ошибки.

Вид окна программы в режиме языка FBD

Вид окна программы в режиме языка LAD

Схема каждой платы собирается из функциональных блоков в соответствии с логикой работы контроллера. Большинство функциональных блоков имеют возможность настройки, с помощью которой их работу можно настроить в соответствии с необходимыми в данном конкретном случае требованиями.

Так же для каждого функционального блока есть развернутое описание, которое доступно в любой момент и помогает разобраться в его работе и настройках.

При работе с программой пользователю нет необходимости заниматься написанием кода, контролем за использованием входов – выходов, проверкой уникальности имен и согласованностью типов данных. За всем этим следит программа. Так же она проверяет корректность проекта целиком и указывает на наличие ошибок.
Для работы с внешними устройствами создано несколько вспомогательных инструментов. Это инструмент инициализации и настройки часов реального времени, инструменты для чтения адресов устройств на шинах OneWire и I2C а так же инструмент для чтения и сохранения кодов кнопок на ИК пульте. Все определённые данные можно сохранить в виде файла и в последующем использовать в программе.

Список функциональных блоков существующих на сегодняшний день в языке FBD

Базовые элементы



Специальные блоки

Тригеры



Таймеры


Счетчики


Математика



Алгебра






Сравнение

Com - Порт

Send
SendVariable
ReceiveVariable

Переключатель


Моторы

ServoMotor
StepMotor

Часы реального времени


Дисплеи

Дисплей на чипе НD44780
Подсветка дисплея на чипе НD44780 I2C

Строки

Сложение строк

Датчики



SD карта

Запись переменной на SD карту
Выгрузка файла с SD карты

Конвертация типов

Преобразование строк
Преобразование Float в Integer

Микросхемы расширений

Расширитель выводов 74HC595

Операции с битами

Шифратор
Дешифратор
Чтение бита
Запись бита

Разное

Матричная клавиатура

Список функциональных блоков существующих на сегодняшний день в языке LAD

Базовые блоки

Контакт
Катушка
Защита от дребезга
Выделение переднего фронта

Специальные реле

Двустабильное реле
Реле времени
Генератор
Реле сравнения

Алгебра

SIN
COS
TAN
ABS
MAX
MIN
SQ
SQRT
POW
RANDOM

Аналоговые блоки

Масштабирование
Математика
Счетчик
Аналоговый переключатель
Переключатель много к одному
Переключатель один ко многим
Аналоговый вход контроллера
Аналоговый выход контроллера
Вход аналогового соеденителя
Выход аналогового соединителя
Скоростной счетчик

ComPort

Передача в ComPort
Передача переменной через ComPort
Прием переменной через ComPort

Моторы

Сервомотор
Шаговый двигатель

Часы реального времени

Получить данные
Будильник
Установка времени

Дисплеи

Дисплей на чипе HD44780
Блок управления подсветкой дисплея на чипе HD4480 I2C
Блок декодирования семи сегментного индикатора

Строки

Сложение строк

Датчики

Ультразвуковой дальномер HC-SR04
Датчик температуры и влажности DHT11 (DHT21, DHT22)
Датчик температуры DS18x2x
IR Ressive
BMP-085

Этот урок дает минимальные знания, необходимые для программирования систем Ардуино на языке C. Можно только просмотреть его и в дальнейшем использовать как справочную информацию. Тем, кто программировал на C в других системах можно пропустить статью.

Повторю, что это минимальная информация. Описание указателей, классов, строковых переменных и т.п. будет дано в последующих уроках. Если что-то окажется непонятным, не беспокойтесь. В дальнейших уроках будет много примеров и пояснений.

Структура программы Ардуино.

Структура программы Ардуино достаточно проста и в минимальном варианте состоит из двух частей setup() и loop().

void setup() {

void loop() {

Функция setup() выполняется один раз, при включении питания или сбросе контроллера. Обычно в ней происходят начальные установки переменных, регистров. Функция должна присутствовать в программе, даже если в ней ничего нет.

После завершения setup() управление переходит к функции loop(). Она в бесконечном цикле выполняет команды, записанные в ее теле (между фигурными скобками). Собственно эти команды и совершают все алгоритмические действия контроллера.

Первоначальные правила синтаксиса языка C.

; точка с запятой Выражения могут содержать сколь угодно много пробелов, переносов строк. Признаком завершения выражения является символ ”точка с запятой ”.

z = x + y;
z= x
+ y ;

{ } фигурные скобки определяют блок функции или выражений. Например, в функциях setup() и loop().

/* … */ блок комментария , обязательно закрыть.

/* это блок комментария */

// однострочный комментарий , закрывать не надо, действует до конца строки.

// это одна строка комментария

Переменные и типы данных.

Переменная это ячейка оперативной памяти, в которой хранится информация. Программа использует переменные для хранения промежуточных данных вычислений. Для вычислений могут быть использованы данные разных форматов, разной разрядности, поэтому у переменных в языке C есть следующие типы.

Тип данных Разрядность, бит Диапазон чисел
boolean 8 true, false
char 8 -128 … 127
unsigned char 8 0 … 255
byte 8 0 … 255
int 16 -32768 … 32767
unsigned int 16 0 … 65535
word 16 0 … 65535
long 32 -2147483648 … 2147483647
unsigned long 32 0 … 4294967295
short 16 -32768 … 32767
float 32 -3.4028235+38 … 3.4028235+38
double 32 -3.4028235+38 … 3.4028235+38

Типы данных выбираются исходя из требуемой точности вычислений, форматов данных и т.п. Не стоит, например, для счетчика, считающего до 100, выбирать тип long. Работать будет, но операция займет больше памяти данных и программ, потребует больше времени.

Объявление переменных.

Указывается тип данных, а затем имя переменной.

int x; // объявление переменной с именем x типа int
float widthBox; // объявление переменной с именем widthBox типа float

Все переменные должны быть объявлены до того как будут использоваться.

Переменная может быть объявлена в любой части программы, но от этого зависит, какие блоки программы могут ее использовать. Т.е. у переменных есть области видимости.

  • Переменные, объявленные в начале программы, до функции void setup(), считаются глобальными и доступны в любом месте программы.
  • Локальные переменные объявляются внутри функций или таких блоков, как цикл for, и могут использоваться только в объявленных блоках. Возможны несколько переменных с одним именем, но разными областями видимости.

int mode; // переменная доступна всем функциям

void setup() {
// пустой блок, начальные установки не требуются
}

void loop() {

long count; // переменная count доступна только в функции loop()

for (int i=0; i < 10;) // переменная i доступна только внутри цикла
{
i++;
}
}

При объявлении переменной можно задать ее начальное значение (проинициализировать).

int x = 0; // объявляется переменная x с начальным значением 0
char d = ‘a’; // объявляется переменная d с начальным значением равным коду символа ”a”

При арифметических операциях с разными типами данных происходит автоматическое преобразование типов данных. Но лучше всегда использовать явное преобразование.

int x; // переменная int
char y; // переменная char
int z; // переменная int

z = x + (int) y; // переменная y явно преобразована в int

Арифметические операции.

Операции отношения.

Логические операции.

Операции над указателями.

Битовые операции.

& И
| ИЛИ
^ ИСКЛЮЧАЮЩЕЕ ИЛИ
~ ИНВЕРСИЯ
<< СДВИГ ВЛЕВО
>> СДВИГ ВПРАВО

Операции смешанного присваивания.

Выбор вариантов, управление программой.

Оператор IF проверяет условие в скобках и выполняет последующее выражение или блок в фигурных скобках, если условие истинно.

if (x == 5) // если x=5, то выполняется z=0
z=0;

if (x > 5) // если x >
{ z=0; y=8; }

IF … ELSE позволяет сделать выбор между двух вариантов.

if (x > 5) // если x > 5, то выполняется блок z=0, y=8;
{
z=0;
y=8;
}

{
z=0;
y=0;
}

ELSE IF – позволяет сделать множественный выбор

if (x > 5) // если x > 5, то выполняется блок z=0, y=8;
{
z=0;
y=8;
}

else if (x > 20) // если x > 20, выполняется этот блок
{
}

else // в противном случае выполняется этот блок
{
z=0;
y=0;
}

SWITCH CASE - множественный выбор. Позволяет сравнить переменную (в примере это x) с несколькими константами (в примере 5 и 10) и выполнить блок, в котором переменная равна константе.

switch (x) {

case 5:
// код выполняется если x = 5
break;

case 10:
// код выполняется если x = 10
break;

default:
// код выполняется если не совпало ни одно предыдущее значение
break;
}

Цикл FOR . Конструкция позволяет организовывать циклы с заданным количеством итераций. Синтаксис выглядит так:

for (действие до начала цикла;
условие продолжения цикла;
действие в конце каждой итерации) {

// код тела цикла

Пример цикла из 100 итераций.

for (i=0; i < 100; i++) // начальное значение 0, конечное 99, шаг 1

{
sum = sum + I;
}

Цикл WHILE . Оператор позволяет организовывать циклы с конструкцией:

while (выражение)
{
// код тела цикла
}

Цикл выполняется до тех пор, пока выражение в скобках истинно. Пример цикла на 10 итераций.

x = 0;
while (x < 10)
{
// код тела цикла
x++;
}

DO WHILE – цикл с условием на выходе.

do
{
// код тела цикла
} while (выражение);

Цикл выполняется пока выражение истинно.
BREAK – оператор выхода из цикла. Используется для того, чтобы прервать выполнение циклов for, while, do while.

x = 0;
while (x < 10)
{
if (z > 20) break; // если z > 20, то выйти из цикла
// код тела цикла
x++;
}

GOTO – оператор безусловного перехода.

goto metka1; // переход на metka1
………………
metka1:

CONTINUE - пропуск операторов до конца тела цикла.

x = 0;
while (x < 10)
{
// код тела цикла
if (z > 20) continue; // если z > 20, то вернуться на начало тела цикла
// код тела цикла
x++;
}

Массивы.

Массив это область памяти, где последовательно хранятся несколько переменных.

Объявляется массив так.

int ages; // массив из 10 переменных типа int

float weight; // массив из 100 переменных типа float

При объявлении массивы можно инициализировать:

int ages = { 23, 54, 34, 24, 45, 56, 23, 23, 27, 28};

Обращаются к переменным массивов так:

x = ages; // x присваивается значение из 5 элемента массива.
ages = 32; // 9 элементу массива задается значение 32

Нумерация элементов массивов всегда с нуля.

Функции.

Функции позволяют выполнять одни и те же действия с разными данными. У функции есть:

  • имя, по которому ее вызывают;
  • аргументы – данные, которые функция использует для вычисления;
  • тип данных, возвращаемый функцией.

Описывается пользовательская функция вне функций setup() и loop().

void setup() {
// код выполняется один раз при запуске программы
}

void loop() {
// основной код, выполняется в цикле
}

// объявление пользовательской функции с именем functionName
type functionName(type argument1, type argument1, … , type argument)
{
// тело функции
return();
}

Пример функции, вычисляющей сумму квадратов двух аргументов.

int sumQwadr (int x, int y)
{
return(x* x + y*y);
}

Вызов функции происходит так:

d= 2; b= 3;
z= sumQwadr(d, b); // в z будет сумма квадратов переменных d и b

Функции бывают встроенные, пользовательские, подключаемые.

Очень коротко, но этих данных должно хватить для того, чтобы начать писать программы на C для систем Ардуино.

Последнее, что я хочу рассказать в этом уроке, как принято оформлять программы на C. Думаю, если вы читаете этот урок в первый раз, стоит пропустить этот раздел и вернутся к нему позже, когда будет что оформлять.

Главная цель внешнего оформления программ это улучшить читаемость программ, уменьшить число формальных ошибок. Поэтому для достижения этой цели можно смело нарушать все рекомендации.

Имена в языке C.

Имена, представляющие типы данных, должны быть написаны в смешанном регистре. Первая буква имени должна быть заглавная (верхний регистр).

Signal, TimeCount

Переменные должны быть записаны именами в смешанном регистре, первая буква строчная (нижний регистр).

Рубрика: . Вы можете добавить в закладки.