Ростелеком

Как это работает: микропроцессор. История микропроцессоров

К омпания Intel была создана 18 июля 1968 года двумя инженерами – Гордоном Муром и Робертом Нойсом, которые работали на компанию Fairchild. Несколько позднее у компании появился еще один сооснователь – Эндрю Гроув. На тот момент инженеры уже имели перед собой определенную цель – сделать полупроводниковую память практичной и доступной. Задумка была весьма амбициозной, поскольку на то время память полупроводникового типа стоила более чем в сто раз дороже памяти, созданной при помощи магнитных технологий. На тот момент себестоимость полупроводниковой памяти была более одного доллара за бит.


Процессор Intel 4004

К 1970 году компания Intel была уже довольно известна как успешный поставщик микросхем памяти, первой создав самый емкий на тот момент модуль памяти 1 килобайт. Модуль, известный как динамическое запоминающее устройство, использующее произвольную выборку (DRAM), стал самым продаваемым полупроводниковым чипом по итогам года. В тот момент компания уже насчитывала более ста сотрудников.

На продукцию Intel обратила внимание компания Busicom. Вскоре японская компания заказала у Intel разработку чипов для целого семейства программируемых калькуляторов. В то время все микросхемы управления создавались по индивидуальным проектам под требуемые задачи, что не позволяло подобным микросхемам получать широкого распространения.

Изначально проект Busicom подразумевал создание не менее двенадцати различных микросхем уникальной архитектуры. Тэд Хофф, инженер Intel, отказался от данной идеи и предложил создать однокристальное универсальное устройство, загружающее инструкции из полупроводниковой памяти. При помощи всего четырех микросхем (процессор 4004, контроллер ввода-вывода, ОЗУ, ПЗУ) программа могла менять их функции и выполнять определенные задания. Новая микросхема была универсальной, что позволяло устанавливать ее в другие устройства, а не только в калькуляторах. Все разрабатываемые ранее микросхемы имели поддержку уникального «вшитого» набора инструкций, а новое изобретение предоставляло возможность выполнять различные инструкции, загружаемые из памяти.

В апреле 1970 года Intel нанимает инженера Фредерико Фаггина для разработки управляющей микросхемы 4004 в соответствии с наработками Хоффа. Фаггин, как и основатели Intel, ранее работал в компании Fairchild Semiconductor, где принимал непосредственное участие в разработке технологии кремниевого затвора, которая сыграла значимую роль при создании микропроцессоров. Работа над серией микросхем 4004 была завершена в марте 1971 года, а массовое производство было налажено уже в июне этого же года.

Процессор 4004 изначально предназначался для использования в программируемых калькуляторах, однако в дальнейшем нашел и другие применения. Например, чип использовался при анализе крови, для управления светофорами и даже в ракете «Pioneer 10», созданной и запущенной специалистами NASA.

Следующая версия процессора, 8080, была представлена в апреле 1974 года. Данный чип содержал порядка 6 тысяч транзисторов и был способен адресовать уже 64 килобайт памяти. Именно он был использован для установки первого персонального компьютера Altair 8800. Данный компьютер использовал операционную систему CP/M, а также интерпретатор языка BASIC, разработанный компанией Microsoft.

Первые микропроцессоры на четыре разряда (бита) состояли из одного кристалла.  

Первые микропроцессоры были выполнены на р - МОП-схе-мах. Современные микропроцессоры выполняются на и - МОП-схемах, имеющих низкую стоимость и среднее быстродействие, на предельно-маломощных КМОП-схемах и на ТТЛ-схемах с высоким быстродействием.  

Первые микропроцессоры (МП) появились в начале 70 - х годов в результате совместных усилий системотехников, решающих проблемы архитектурной организации средств вычислительной техники, и схемотехников, занимающихся вопросами конструирования и технологии производства радиоэлектронных средств.  

Первый микропроцессор - 4-разрядный Intel 404 - поступил на неподготовленный к этому событию рынок в 1971 г. МП 4004 разработанный с ориентацией на требования изготовителей калькуляторов, предстал перед миром как знамение новой эры интегральной электроники.  

В первых микропроцессорах применялся способ управления памятью, известный как чисто машинный.  

Стоит напомнить, что первые микропроцессоры, импортированные в Японию в 1971 г., стоили около тысячи долларов.  

За более чем 30 лет, прошедших с момента появления первых микропроцессоров, были выработаны определенные правила обмена, которым следуют и разработчики новых микропроцессорных систем. Правила эти не слишком сложны, но твердо знать и неукоснительно соблюдать их для успешной работы необходимо.  

Операционные системы создаются для какого-либо типа микропроцессоров на основе той системы команд, которая закладывается в микропроцессор при разработке. Первый микропроцессор был создан в фирме Intel, лидировавшей в производстве микросхем.  

Может ли какое-либо техническое достижение компьютерной эры соперничать по своей значимости с микропроцессором. Первые микропроцессоры, короткая история которых началась всего десятилетие назад, основывались главным образом на достижениях микроэлектроники - технологии, возникшей гораздо позднее появления самих ЭВМ и в значительной степени независимо от них. С самого начала конструкторы и изготовители микропроцессоров вызывали бурное одобрение, как только им удавалось продемонстрировать, что каждая их новая разработка еще на какой-то шажок становится ближе по структуре к современной средней или большой вычислительной машине. Наблюдатели без труда приходили к выводу, что если плотность монтажа, быстродействие и возможности автоматического проектирования будут продолжать возрастать в соответствии с ожиданиями, то микропроцессоры вскоре по мощности и логике сравняются с крупными мини - ЭВМ, а возможно, и с большими вычислительными машинами.  

В 1970 г. был сделан еще один важный шаг на пути к персональному компьютеру - Маршиан Эдвард Хофф из фирмы Intel сконструировал интегральную схему, аналогичную по своим функциям центральному процессору большого компьютера. Так появился первый микропроцессор Intel-4004 (см. рис. справа), который был выпущен в продажу в 1971 г. Это был настоящий прорыв, ибо микропроцессор Intel-4004 размером менее 3 см был производительнее гигантской машины ENIAC. Правда, возможности Intel-4004 были куда скромнее, чем у центрального процессора больших компьютеров того времени, - он работал гораздо медленнее и мог обрабатывать одновременно только 4 бита информации (процессоры больших компьютеров обрабатывали 16 или 32 бита одновременно), но и стоил он в десятки тысяч раз дешевле.  

Создание такой операционной системы, как PC-DOS, не является ни делом случая, ни результатом чисто технократического планирования. Экономическая конкуренция давно привела к появлению операционных систем для больших ЭВМ еще до появления первых микропроцессоров.  

Он представляет собой одну-единственную микросхему, управляющую всем, что происходит в ПК. Микросхема эта работает на определенной тактовой частоте, измеряемой некоторым количеством мегагерц. По сегодняшним меркам первые микропроцессоры (8088 или 80286) были до ужаса медлительны и не смогли бы управлять современными программами.  

Переконструировать большую интегральную схему всякий раз, когда компания пожелает обновить ассортимент выпускаемой продукции, что случается очень часто, действительно колоссальная работа. Микропроцессор появился на свет благодаря идее, выдвинутой специалистами из Бизиком: необходимо CKOEI-струировать такую интегральную схему, которую легко можно приспособить к любому новому изделию, осваиваемому их фирмой. Увы, тогда Япония была еще слишком слаба в сфере опытно-конструкторских разработок; поэтому Соединенным Штатам удалось подхватить мячик и убежать, создав первый микропроцессор.  

Однако фирма Intel продолжала придерживаться прототипа, средства на разработку которого уже были израсходованы. Таким образом, хорошо известный МП Intel 8008 стал первым микропроцессором на мировом рынке.  

Кто и когда изобрел первый микропроцессор в мире

О том, кто изобрел микропроцессор, знает каждый сотрудник компании Intel. В 1969 году в этой, тогда еще не известную, фирму пришли работать японские разработчики, которые раньше занимались проектированием калькуляторов. Инженеры использовали двенадцать интегральных схем, чтобы создать обычный настольный вычислитель. Главную роль в данном проекте играл Масатоши Шима. В то время Тед Хофсор управлял одним из отделов Intel. Он, как будущий создатель микропроцессора, понял вместо калькулятора с возможностью программирования лучше сделать компьютер, который будет программировать работу калькулятора.

Создание первого процессора в мире началось с разработки его архитектуры. В 1969 году один из сотрудников Интел предложил назвать первую серию микропроцессоров как семейство 4000. Каждая модель семейства имело шестнадцать выходных микросхем. Это помогает понять, какой был первый микропроцессор. Модель 4001 имело память на 2 Кб. В модели 4003 был десятибитовый расширитель со связью для клавиатуры и различными индикаторам. А версия 4004 уже было четырехбитовым процессорным устройством. Многие считают, что и был самый первый микропроцессор. В модели 4004 работало две тысячи триста транзисторов. Устройство работало на частоте 108 кГц.

Сегодня можно встретить разные мнения касательно того, когда был создан первый процессора Однако большинство считает, что 15 ноября 1971 года это дата и год создания первого микропроцессора в мире. Первоначально эту разработку выкупила японская фирма Busicom за шестьдесят тысяч долларов, но Интел позже вернула деньги, чтобы оставаться единственными правообладателями изобретения.

Первый процессор использовали в системах управления дорожными движением, в частности в светофорах. Кроме того, устройство применялось в анализаторах крови. Чуть позже 4004 нашел место в космическом зонде Пионер-10, который запустили в 1972 году.

Первый отечественный микропроцессор был создан в начале семидесятых годах в Специальном Вычислительном Центре под руководством Д.И. Юдицкого.

Таким образом, в 70-е года микропроцессоры стали постепенно проникать в самые разные области деятельности человека. Все процессоры позже разделились на непосредственно микропроцессоры и микроконтроллеры. Первые используются в персональных компьютерах, а микроконтроллеры нашли применение в управлении разными системами. В них более слабое вычислительное ядро, но имеется множество дополнительных узлов. Микроконтроллеры иногда называют микро-ЭВМ, поскольку все узлы и модули у них расположены прямо на кристалле.

Фирма Intel выпустила свой первый микропроцессор - модель 4004

Компания Intel выпустила первый в мире микропроцессор, который был доступен всем коммерческим структурам и простым людям. За год до этого военными был разработан микропроцессор F14 CADC(en), который носил гриф «совершенно секретно» до 1998 года.

Японская компания Busicom Corp (ранее называлась Nippon Calculating Machine, Ltd) занималась производством калькуляторов, но микросхемы, требуемые для работы вычислительной машинки, разрабатывала фирма Intel. Поэтому компания Busicom Corp для своего нового калькулятора заказала 12 микросхем. Стоит отметить, что микросхема обладала минимальным количеством функций и способна была выполнять определенный перечень работы. Когда появлялось новое действие, приходилось разрабатывать дополнительную микросхему. Сотрудники компании Intel считали, что это экономически и практически не выгодно. Стоит все имеющиеся микросхемы заменить одним центральным процессором, который будет выполнять все необходимые задачи.

Идею поддержали обе компании. С 1969 года Тэд Хофф, разработчик проекта и представитель компании Intel, и Стэнли Мейзор сотрудник компании Busicom Corp, который ранее занимался общим дизайном микросхем, занялись проектированием процессора. Разработки начались с сокращения количества микросхем до 4. Они включили в себя – центральный процессор, 4-х разрядный центральный процессор, постоянное запоминающее устройство для хранения постоянной информации и оперативное запоминающее устройство для хранения информации пользователя.

Когда в компанию Intel пришел работать итальянский физик Федерико Фаджин, разработки микропроцессора перешли на новый этап. Его потом назовут главным разработчиком микропроцессоров семьи MCS-4. До этого времени Фаджин разрабатывал похожие схемы. В 1961 году в компании Olivetti Федерико занимался логическим проектированием компьютеров. В 1968 году для фирмы Fairchil разработал коммерческую микросхему с технологией silicon gate: Fairchild 3708. Этот опыт помог ему свести в одно целое микропроцессор CPU. Фаджин сделал огромный вклад в развитие и разработку микросхемы. Совместная работа итальянского физика с Масатоси Симой, инженером по программному обеспечению фирмы Busicom Corp, привела к разработке первого микропроцессора 4004, который был представлен всему миру 15 ноября 1971 году. Стоимость микропроцессора составляла 200 долларов.

Почему микропроцессору присвоили имя 4004? Первая цифра обозначает номер изделия. Каждое изделие фирмы Intel имело свой номер. Под первым номером выпускались микросхемы памяти (PMOS-чипы). Под вторым номером выпускались микросхемы NMOS. Под третьим номером проектировались биполярные микросхемы. Соответственно, четвертый номер получили микропроцессоры. Под пятым номером стали выпускать микросхемы CMOS. Под номером семь – магнитные домены. Под восьмым номером – разрядные микропроцессоры и микроконтроллеры. Шестой и девятый номер отсутствовал.


Министерство Образования и Науки Российской Федерации

Федеральное Агентство по Образованию

Санкт-Петербургский Государственный Университет Сервиса и Экономики

РЕФЕРАТ

по дисциплине « Информатика »

«История развития микропроцессора»

Выполнил:

Студент 1 курса

заочной формы обучения

Романенко К.А.

Научный руководитель:

Дата представления работы

« »____________ 2010 г.

Санкт-Петербург

Введение ………………………………………………………………………..3

1. Теоретическая часть ………………………………………………………4

1.1. Определение микропроцессора…………………………………………4

1.2. Классификация микропроцессоров………………………………….....5

1.3. Функции и строение микропроцессора………………………………...8

1.4. Основные характеристики микропроцессоров ПК……………………14

2. История развития микропроцессора …………………………………….17

2.1. Этапы технологии производства………………………………………17

2.2.Современная технология изготовления………………………………..19

3. Российские микропроцессоры ……………………………………………25

4. Микропроцессоры будущего ……………………………………………...29

Заключение ……………………………………………………………………35

Список используемой литературы……………………………………………37

Введение.

Компьютерная техника лежит в основе современного прогресса. Она обеспечивает работу современных станков, контроль технологических процессов на производстве, связь на всех уровнях (от межгосударственного до бытового). С помощью нее проводятся сложные и трудоемкие расчеты, что значительно ускоряет процессы конструирования, разработки, фундаментальные исследования, то есть задает темпы прогресса.

Важнейший компонент любого персонального компьютера - это микропроцессор, который управляет работой компьютера и выполняет большую часть обработки информации.

И в зависимости от того, как будет в будущем меняться мощность этой маленькой детали, будет зависеть производительность всей компьютерной техники в целом. Полученные в ходе написания работы знания могут пригодиться и в обыденной жизни, например при приобретении персонального компьютера.

Цель данной работы – рассмотреть классификацию, структуру, основные характеристики и историю развития микропроцессоров ПК.

Для достижения поставленной цели необходимо решить следующие задачи:

Раскрыть основные понятия темы;

Дать общую схему классификации микропроцессоров;

Рассмотреть структуру и основные характеристики микропроцессоров ПК;

Рассмотреть историю развития микропроцессоров и усовершенствования основных характеристик.

1. Теоретическая часть.

1.1. Определение микропроцессора.

Вернемся к истории. Так случилось, что отдельные транзисторы и интегральные схемы были вытеснены с рынка новым устройством - микропроцессором. Это и было началом новой компьютерной эры, которая длится вот уже без малого четыре десятилетия. Отсчет нового летоисчисления компьютерной эры ведут с

1971 г., когда командой во главе с талантливым изобретателем, доктором Тэдом Хоффом был создан первый микропроцессор Intel 4004.

Первый чип Intel 4004 работал на частоте 750 кГц, содержал 2300 транзисторов и стоил около 200$. Производительность его оценивалась в 60 тыс. операций в секунду. На сегодняшний день рекордные показатели принадлежат микропроцессорам Alpha 21264 фирмы DEC и составляют: 600 МГц, 15,2 млн. транзисторов, 2 млрд. операций в секунду. Стоят они около 300$.

Микропроцессор (МП) - это программно-управляемое электронное цифровое устройство, предназначенное для обработки цифровой информации и управления процессом этой обработки, выполненное на одной или нескольких интегральных схемах с высокой степенью интеграции электронных элементов.

Основные функции процессора: выработка синхронизирующих сигналов; формирование исполнительных адресов для обращения к оперативной памяти; организация обмена информацией между оперативной памятью и внешними устройствами; организация многопрограммной работы.

Поразительно - но за эти годы старому доброму процессору так и не нашлось достойного преемника! Хотя сегодняшние процессоры от Intel быстрее своего прародителя более чем в десять тысяч раз, а любой домашний компьютер обладает мощностью и «сообразительностью» во много раз большей, чем компьютер, управлявший полетом космического корабля «Аполлон» к Луне, процессор остается процессором.

1.2. Классификация микропроцессоров.

В современном мире трудно найти область техники, где не применялись бы микропроцессоры. Они применяются при вычислениях, они выполняют функции управления, они используются при обработке звука и изображения. В зависимости от области применения микропроцессора меняются требования к нему.

По числу больших интегральных схем (БИС) в микропроцессорном комплекте различают микропроцессоры однокристальные, многокристальные и многокристальные секционные.

Однокристальные микропроцессоры получаются при реализации всех аппаратных средств процессора в виде одной БИС или СБИС (сверхбольшой интегральной схемы). По мере увеличения степени интеграции элементов в кристалле и числа выводов корпуса параметры однокристальных микропроцессоров улучшаются. Однако возможности однокристальных микропроцессоров ограничены аппаратными ресурсами кристалла и корпуса.

Многокристальные секционные микропроцессоры получаются в том случае, когда в виде БИС реализуются части (секции) логической структуры процессора при функциональном разбиении ее вертикальными плоскостями.

По системе команд микропроцессоры отличаются огромным разнообразием, зависящим от фирмы-производителя. Тем не менее можно определить две крайние политики построения микропроцессоров:

    Аккумуляторные микропроцессоры

    Микропроцессоры с регистрами общего назначения

В микропроцессорах с регистрами общего назначения математические операции могут выполняться над любой ячейкой памяти. В зависимости от типа операции команда может быть одноадресной, двухадресной или трёхадресной.

Принципиальным отличием аккумуляторных процессоров является то, что математические операции могут производиться только над одной особой ячейкой памяти - аккумулятором. Для того, чтобы произвести операцию над произвольной ячейкой памяти её содержимое необходимо скопировать в аккумулятор, произвести требуемую операцию, а затем скопировать полученный результат в произвольную ячейку памяти.

В настоящее время в чистом виде не существует ни та ни другая система команд. Все выпускаемые в настоящее время процессоры обладают системой команд с признаками как аккумуляторных процессоров, так и микропроцессоров с регистрами общего назначения.

По назначению различают универсальные и специализированные микропроцессоры.

Универсальные микропроцессоры могут быть применены для решения широкого круга разнообразных задач. При этом их эффективная производительность слабо зависит от проблемной специфики решаемых задач.

Среди специализированных микропроцессоров можно выделить различные микроконтроллеры, ориентированные на выполнение сложных последовательностей логических операций, математические МП, предназначенные для повышения производительности при выполнении арифметических операций за счет.

По виду обрабатываемых входных сигналов различают цифровые и аналоговые микропроцессоры. Сами микропроцессоры - цифровые устройства, однако могут иметь встроенные аналого-цифровые и цифро-аналоговые преобразователи. Поэтому входные аналоговые сигналы передаются в МП через преобразователь в цифровой форме, обрабатываются и после обратного преобразования в аналоговую форму поступают на выход. Отличительная черта аналоговых микропроцессоров способность к переработке большого объема числовых данных.

По характеру временной организации работы микропроцессоры делят на синхронные и асинхронные.

Синхронные микропроцессоры - микропроцессоры, в которых начало и конец выполнения операций задаются устройством управления (время выполнения операций в этом случае не зависит от вида выполняемых команд и величин операндов).

Асинхронные микропроцессоры позволяют начало выполнения каждой следующей операции определить по сигналу фактического окончания выполнения предыдущей операции.

По организации структуры микропроцессорных систем различают микроЭВМ одно- и многомагистральные.

В одномагистральных микроЭВМ все устройства имеют одинаковый интерфейс и подключены к единой информационной магистрали, по которой передаются коды данных, адресов и управляющих сигналов.

В многомагистральных микроЭВМ устройства группами подключаются к своей информационной магистрали. Это позволяет осуществить одновременную передачу информационных сигналов по нескольким (или всем) магистралям.

Поколения процессоров отличаются друг от друга скоростью работы, архитектурой, исполнением и внешним видом... словом, буквально всем. Причем отличаются не только количественно, но и качественно. Так, при переходе от Pentium к Pentium II и затем - к Pentium III была значительно расширена система команд (инструкций) процессора.

Если брать за точку отсчета изделия «королевы» процессорного рынка, корпорации 1п1е1, то за всю 27-летнюю историю процессоров этой фирмы сменилось восемь их поколений: 8088, 286, 386, 486, Pentium, Pentium II, Pentium III, Pentium 4.

В пределах одного поколения все ясно: чем больше тактовая частота, тем быстрее процессор. А как же быть, если на рынке имеются два процессора разных поколений, но с одинаковой тактовой частотой? Например, Pentium III и Pentium 4... Конечно, второй процессор поколения будет работать быстрее - на 10-15 %, в зависимости от задачи. Связано это с тем, что в новых процессорах часто бывают встроены новые системы команд-инструкций, оптимизирующих обработку некоторых видов информации.

1.3. Функции и строение микропроцессора.

Функции процессора:

    обработка данных по заданной программе путем выполнения арифметических и логических операций;

    программное управление работой устройств компьютера.

Модели процессоров включают следующие совместно работающие устройства:

    Устройство управления (УУ). Осуществляет координацию работы всех остальных устройств, выполняет функции управления устройствами, управляет вычислениями в компьютере.

    Арифметико-логическое устройство (АЛУ). Так называется устройство для целочисленных операций. Арифметические операции, такие как сложение, умножение и деление, а также логические операции (OR, AND, ASL, ROL и др.) обрабатываются при помощи АЛУ. Эти операции составляют подавляющее большинство программного кода в большинстве программ. Все операции в АЛУ производятся в регистрах - специально отведенных ячейках АЛУ. В процессоре может быть несколько АЛУ. Каждое способно исполнять арифметические или логические операции независимо от других, что позволяет выполнять несколько операций одновременно. Арифметико-логическое устройство выполняет арифметические и логические действия. Логические операции делятся на две простые операции: "Да" и "Нет" ("1" и "0"). Обычно эти два устройства выделяются чисто условно, конструктивно они не разделены.

    AGU (Address Generation Unit) - устройство генерации адресов. Это устройство не менее важное, чем АЛУ, т.к. оно отвечает за корректную адресацию при загрузке или сохранении данных. Абсолютная адресация в программах используется только в редких исключениях. Как только берутся массивы данных, в программном коде используется косвенная адресация, заставляющая работать AGU.

    Математический сопроцессор (FPU). Процессор может содержать несколько математических сопроцессоров. Каждый из них способен выполнять, по меньшей мере, одну операцию с плавающей точкой независимо от того, что делают другие АЛУ. Метод конвейерной обработки данных позволяет одному математическому сопроцессору выполнять несколько операций одновременно. Сопроцессор поддерживает высокоточные вычисления как целочисленные, так и с плавающей точкой и, кроме того, содержит набор полезных констант, ускоряющих вычисления. Сопроцессор работает параллельно с центральным процессором, обеспечивая, таким образом, высокую производительность. Система выполняет команды сопроцессора в том порядке, в котором они появляются в потоке. Математический сопроцессор персонального компьютера IBM PC позволяет ему выполнять скоростные арифметические и логарифмические операции, а также тригонометрические функции с высокой точностью.

    Дешифратор инструкций (команд). Анализирует инструкции в целях выделения операндов и адресов, по которым размещаются результаты. Затем следует сообщение другому независимому устройству о том, что необходимо сделать для выполнения инструкции. Дешифратор допускает выполнение нескольких инструкций одновременно для загрузки всех исполняющих устройств.

    Кэш-память. Особая высокоскоростная память процессора. Кэш используется в качестве буфера для ускорения обмена данными между процессором и оперативной памятью, а также для хранения копий инструкций и данных, которые недавно использовались процессором. Значения из кэш-памяти извлекаются напрямую, без обращения к основной памяти. При изучении особенностей работы программ было обнаружено, что они обращаются к тем или иным областям памяти с различной частотой, а именно: ячейки памяти, к которым программа обращалась недавно, скорее всего, будут использованы вновь. Предположим, что микропроцессор способен хранить копии этих инструкций в своей локальной памяти. В этом случае процессор сможет каждый раз использовать копию этих инструкций на протяжении всего цикла. Доступ к памяти понадобиться в самом начале. Для хранения этих инструкций необходим совсем небольшой объём памяти. Если инструкции в процессор поступают достаточно быстро, то микропроцессор не будет тратить время на ожидание. Таким образом экономиться время на выполнение инструкций. Но для самых быстродействующих микропроцессоров этого недостаточно. Решение данной проблемы заключается в улучшении организации памяти. Память внутри микропроцессора может работать со скоростью самого процессора.

    Кэш первого уровня (L1 cache). Кэш-память, находящаяся внутри процессора. Она быстрее всех остальных типов памяти, но меньше по объёму. Хранит совсем недавно использованную информацию, которая может быть использована при выполнении коротких программных циклов.

    Кэш второго уровня (L2 cache). Также находится внутри процессора. Информация, хранящаяся в ней, используется реже, чем информация, хранящаяся в кэш-памяти первого уровня, но зато по объёму памяти он больше. Также в настоящее время в процессорах используется кэш третьего уровня.

    Основная память. Намного больше по объёму, чем кэш-память, и значительно менее быстродействующая.

Многоуровневая кэш-память позволяет снизить требования наиболее производительных микропроцессоров к быстродействию основной динамической памяти. Так, если сократить время доступа к основной памяти на 30%, то производительность хорошо сконструированной кэш-памяти повыситься только на 10-15%. Кэш-память, как известно, может достаточно сильно влиять на производительность процессора в зависимости от типа исполняемых операций, однако ее увеличение вовсе не обязательно принесет увеличение общей производительности работы процессора. Все зависит от того, насколько приложение оптимизировано под данную структуру и использует кэш, а также от того, помещаются ли различные сегменты программы в кэш целиком или кусками.

Кэш-память не только повышает быстродействие микропроцессора при операции чтения из памяти, но в ней также могут храниться значения, записываемые процессором в основную память; записать эти значения можно будет позже, когда основная память будет не занята. Такая кэш-память называется кэшем с обратной записью (write back cache). Её возможности и принципы работы заметно отличаются от характеристик кэша со сквозной записью (write through cache), который участвует только в операции чтения из памяти.

    Шина - это канал пересылки данных, используемый совместно различными блоками системы. Шина может представлять собой набор проводящих линий в печатной плате, провода, припаянные к выводам разъемов, в которые вставляются печатные платы, либо плоский кабель. Информация передается по шине в виде групп битов. В состав шины для каждого бита слова может быть предусмотрена отдельная линия (параллельная шина), или все биты слова могут последовательно во времени использовать одну линию (последовательная шина). К шине может быть подключено много приемных устройств - получателей. Обычно данные на шине предназначаются только для одного из них. Сочетание управляющих и адресных сигналов, определяет для кого именно. Управляющая логика возбуждает специальные стробирующие сигналы, чтобы указать получателю, когда ему следует принимать данные. Получатели и отправители могут быть однонаправленными (т.е. осуществлять только либо передачу, либо прием) и двунаправленными (осуществлять и то и другое). Однако самая быстрая процессорная шина не сильно поможет, если память не сможет доставлять данные с соответствующей скоростью.

Типы шин:

    Шина данных. Служит для пересылки данных между процессором и памятью или процессором и устройствами ввода-вывода. Эти данные могут представлять собой как команды микропроцессора, так и информацию, которую он посылает в порты ввода-вывода или принимает оттуда.

    Шина адресов. Используется ЦП для выбора требуемой ячейки памяти или устройства ввода-вывода путем установки на шине конкретного адреса, соответствующего одной из ячеек памяти или одного из элементов ввода-вывода, входящих в систему.

    Шина управления. По ней передаются управляющие сигналы, предназначенные памяти и устройствам ввода-вывода. Эти сигналы указывают направление передачи данных (в процессор или из него).

BTB (Branch Target Buffer) - буфер целей ветвления. В этой таблице находятся все адреса, куда будет или может быть сделан переход. Процессоры Athlon еще используют таблицу истории ветвлений (BHT - Branch History Table), которая содержит адреса, по которым уже осуществлялись ветвления.

Регистры - это внутренняя память процессора. Представляют собой ряд специализированных дополнительных ячеек памяти, а также внутренние носители информации микропроцессора. Регистр является устройством временного хранения данных, числа или команды и используется с целью облегчения арифметических, логических и пересылочных операций. Над содержимым некоторых регистров специальные электронные схемы могут выполнять некоторые манипуляции. Например, "вырезать" отдельные части команды для последующего их использования или выполнять определенные арифметические операции над числами. Основным элементом регистра является электронная схема, называемая триггером, которая способна хранить одну двоичную цифру (разряд). Регистр представляет собой совокупность триггеров, связанных друг с другом определённым образом общей системой управления. Существует несколько типов регистров, отличающихся видом выполняемых операций.

Некоторые важные регистры имеют свои названия, например:

  1. сумматор - регистр АЛУ, участвующий в выполнении каждой операции.

    счетчик команд - регистр УУ, содержимое которого соответствует адресу очередной выполняемой команды; служит для автоматической выборки программы из последовательных ячеек памяти.

    регистр команд - регистр УУ для хранения кода команды на период времени, необходимый для ее выполнения. Часть его разрядов используется для хранения кода операции, остальные - для хранения кодов адресов операндов.

1.4. Основные характеристики микропроцессоров ПК

К основным характеристикам микропроцессора можно отнести такие показатели как тактовую частоту, разрядность процессора, размер кэш-памяти, тип ядра, форм-фактор и т.д. Рассмотрим вышесказанное более подробно.

1. Тактовая частота. Самый важный показатель, определяющий скорость работы процессора. Тактовая частота, измеряемая в мегагерцах (МГц) и гигагерцах (ГГц), обозначает лишь то количество циклов, которые совершает работающий процессор за единицу времени (секунду). Пик спроса сегодня приходится на процессоры с частотой от 3 до 4 ГГц.

2. Разрядность процессора. Если тактовую частоту процессора можно уподобить скорости течения воды в реке, то разрядность процессора - ширине ее русла. Понятно, что процессор со вдвое большей разрядностью может «заглотнуть» вдвое больше данных в единицу времени - в том случае, конечно, если это позволяет сделать специально оптимизированное программное обеспечение. Разpядность пpоцессоpа - максимальное количество pазpядов двоичного кода, котоpые могут обpабатываться или пеpедаваться одновpеменно.

3. Размер кэш-памяти. В эту встроенную память процессор помещает все часто используемые данные. Кэш-память в процессоре имеется двух видов. Самая быстрая - кэш-память первого уровня (16-32 кб у процессоров Intel и до 128 кб - в последних моделях AMD).

Существует еще чуть менее быстрая, но зато более объемная кэш-память второго уровня - и именно ее объемом отличаются различные модификации процессоров.

4. Тип микpопpоцессоpа. Тип установленного в компьютеpе микpопpоцессоpа является главным фактоpом, опpеделяющим облик ПК. Именно от него зависят вычислительные возможности компьютеpа. В зависимости от типа используемого микpо­пpоцессоpа и опpеделенных им аpхитектуpных особенностей компьютеpа pазличают пять классов ПК:

    компьютеры класса XT;

    компьютеpы класса AT;

    компьютеpы класса 386;

    компьютеpы класса 486;

    компьютеpы класса Pentium.

5. Быстpодействие микpопpоцессоpа - это число элементаpных опеpаций, выполняемых микpопpоцессоpом в единицу вpемени (опеpации/секунда).

6. Аpхитектуpа микpопpоцессоpа. Понятие архитектуры микропроцессора включает в себя систему команд и способы адресации, возможность совмещения выполнения команд во времени, наличие дополнительных устройств в составе микропроцессора, принципы и режимы его работы.

В соответствии с аpхитектуpными особенностями, опpеделяющи­ми свойства системы команд, pазличают:

    микропроцессоры типа CISC с полным набором системы команд;

    микропроцессоры типа RISC с усеченным набором системы команд;

    микропроцессоры типа VLIW со сверхбольшим командным словом;

микропроцессоры типа MISC с минимальным набором системы команд и весьма высоким быстродействием и др.

  1. История развития микропроцессора.

      Этапы технологии производства .

История развития технологии производства процессоров полностью соответствует истории развития технологии производства элементной базы.

Первым этапом затронувшим период с сороковых по конец пятидесятых годов, было создание процессоров с использованием электромеханических реле, ферритовых сердечников (устройств памяти) и вакуумных ламп. Они устанавливались в специальные разъёмы на модулях, собранных в стойки. Большое количество таких стоек, соединённых проводниками, в сумме представляли процессор. Отличительной особенностью была низкая надёжность, низкое быстродействие и большое тепловыделение.

Вторым этапом, с середины пятидесятых до середины шестидесятых, стало внедрение транзисторов. Транзисторы монтировались уже на близкие к современным по виду платам, устанавливаемым в стойки. Как и ранее, в среднем процессор состоял из нескольких таких стоек. Возросло быстродействие, повысилась надёжность, уменьшилось энергопотребление.

Третьим этапом, наступившим в середине шестидесятых годов, стало использование микросхем. Первоначально использовались микросхемы низкой степени интеграции, содержащие простые транзисторные и резисторные сборки, затем по мере развития технологии стали использоваться микросхемы, реализующие отдельные элементы цифровой схемотехники (сначала элементарные ключи и логические элементы, затем более сложные элементы - элементарные регистры, счётчики, сумматоры), позднее появились микросхемы, содержащие функциональные блоки процессора - микропрограммное устройство, арифметико-логическое устройство, регистры, устройства работы с шинами данных и команд.

Четвёртым этапом стало создание микропроцессора, при котором на одной микросхеме физически были расположены все основные элементы и блоки процессора. Фирма Intel в 1971 году создала первый в мире 4-х разрядный микропроцессор 4004, предназначенный для использования в микрокалькуляторах. Постепенно практически все процессоры стали выпускаться в формате микропроцессоров. Исключением долгое время оставались только малосерийные процессоры, аппаратно оптимизированные для решения специальных задач (например суперкомпьютеры или процессоры для решения ряда военных задач), либо процессоры, к которым предъявлялись особые требования по надёжности, быстродействию или защите от электромагнитных импульсов и ионизирующей радиации. Постепенно, с удешевлением и распространением современных технологий, эти процессоры также начинают изготавливаться в формате микропроцессора.

Первым общедоступным микропроцессором был 4-разрядный Intel 4004. Его сменили 8-разрядный Intel 8080 и 16-разрядный 8086, заложившие основы архитектуры всех современных настольных процессоров. Но из-за распространённости 8-разрядных модулей памяти был выпущен 8088, клон 8086 с 8-разрядной шиной памяти. Затем проследовала его модификация 80186. В процессоре 80286 появился защищённый режим с 24-битной адресацией, позволявший использовать до 16 Мб памяти. Процессор Intel 80386 появился в 1985 году и привнёс улучшенный защищённый режим, 32-битную адресацию, позволившую использовать до 4 Гб оперативной памяти и поддержку механизма виртуальной памяти. Эта линейка процессоров построена на регистровой вычислительной модели.

Параллельно развиваются микропроцессоры, взявшие за основу стековую вычислительную модель.

2.2. Современная технология изготовления.

В современных компьютерах процессоры выполнены в виде компактного модуля (размерами около 5×5×0,3 см) вставляющегося в ZIF-сокет. Большая часть современных процессоров реализована в виде одного полупроводникового кристалла, содержащего миллионы, а с недавнего времени даже миллиарды транзисторов. В первых компьютерах процессоры были громоздкими агрегатами, занимавшими подчас целые шкафы и даже комнаты, и были выполнены на большом количестве отдельных компонентов.

Первоначально перед разработчиками ставится техническое задание, исходя из которого принимается решение о том, какова будет архитектура будущего процессора, его внутреннее устройство, технология изготовления. Перед различными группами ставится задача разработки соответствующих функциональных блоков процессора, обеспечения их взаимодействия, электромагнитной совместимости. В связи с тем, что процессор фактически является цифровым автоматом, полностью отвечающим принципам булевой алгебры, с помощью специализированного программного обеспечения, работающего на другом компьютере, строится виртуальная модель будущего процессора. На ней проводится тестирование процессора, исполнение элементарных команд, значительных объёмов кода, отрабатывается взаимодействие различных блоков устройства, ведётся оптимизация, ищутся неизбежные при проекте такого уровня ошибки.

После этого из цифровых базовых матричных кристаллов и микросхем, содержащих элементарные функциональные блоки цифровой электроники, строится физическая модель процессора, на которой проверяются электрические и временные характеристики процессора, тестируется архитектура процессора, продолжается исправление найденных ошибок, уточняются вопросы электромагнитной совместимости (например, при практически рядовой тактовой частоте в 10 ГГц отрезки проводника длиной в 7 мм уже работают как излучающие или принимающие антенны).

Затем начинается этап совместной работы инженеров-схемотехников и инженеров-технологов, которые с помощью специализированного программного обеспечения преобразуют электрическую схему, содержащую архитектуру процессора, в топологию кристалла. Современные системы автоматического проектирования позволяют, в общем случае, из электрической схемы напрямую получить пакет трафаретов для создания масок. На этом этапе технологи пытаются реализовать технические решения, заложенные схемотехниками, с учётом имеющейся технологии. Этот этап является одним из самых долгих и сложных в разработке и иногда требует компромиссов со стороны схемотехников по отказу от некоторых архитектурных решений. Следует отметить, что ряд производителей заказных микросхем (foundry) предлагает разработчикам (дизайн-центру или fabless) компромиссное решение, при котором на этапе конструирования процессора используются представленные ими стандартизованные в соответствии с имеющейся технологией библиотеки элементов и блоков (Standard cell). Это вводит ряд ограничений на архитектурные решения, зато этап технологической подгонки фактически сводится к игре в конструктор «Лего». В общем случае, изготовленные по индивидуальным проектам микропроцессоры являются более быстрыми по сравнению с процессорами, созданными на основании имеющихся библиотек.

Следующим этапом является создание прототипа кристалла микропроцессора. При изготовлении современных сверхбольших интегральных схем используется метод литографии. При этом, на подложку будущего микропроцессора (тонкий круг из монокристаллического кремния, либо сапфира) через специальные маски, содержащие прорези, поочерёдно наносятся слои проводников, изоляторов и полупроводников. Соответствующие вещества испаряются в вакууме и осаждаются сквозь отверстия маски на кристалле процессора. Иногда используется травление, когда агрессивная жидкость разъедает не защищённые маской участки кристалла. Одновременно на подложке формируется порядка сотни процессорных кристаллов. В результате появляется сложная многослойная структура, содержащая от сотен тысяч до миллиардов транзисторов. В зависимости от подключения транзистор работает в микросхеме как транзистор, резистор, диод или конденсатор. Создание этих элементов на микросхеме отдельно, в общем случае, не выгодно. После окончания процедуры литографии подложка распиливается на элементарные кристаллы. К сформированным на них контактным площадкам (из золота) припаиваются тонкие золотые проводники, являющиеся переходниками к контактным площадкам корпуса микросхемы. Далее, в общем случае, крепится теплоотвод кристалла и крышка микросхемы.

Затем начинается этап тестирования прототипа процессора, когда проверяется его соответствие заданным характеристикам, ищутся оставшиеся незамеченными ошибки. Только после этого микропроцессор запускается в производство. Но даже во время производства идёт постоянная оптимизация процессора, связанная с совершенствованием технологии, новыми конструкторскими решениями, обнаружением ошибок.

Следует отметить, что параллельно с разработкой универсальных микропроцессоров, разрабатываются наборы периферийных схем ЭВМ, которые будут использоваться с микропроцессором и на основе которых создаются материнские платы. Разработка микропроцессорного набора (chipset) представляет задачу, не менее сложную, чем создание микросхемы микропроцессора.

В последние несколько лет наметилась тенденция переноса части компонентов чипсета (контроллер памяти, контроллер шины PCI Express) в состав процессора. См. подробнее Система на кристалле.

В начале 1970-х годов благодаря прорыву в технологии создания БИС и СБИС (больших и сверхбольших интегральных схем, соответственно), микросхем, стало возможным разместить все необходимые компоненты ЦП в одном полупроводниковом устройстве. Появились так называемые микропроцессоры. Сейчас слова микропроцессор и процессор практически стали синонимами, но тогда это было не так, потому что обычные (большие) и микропроцессорные ЭВМ мирно сосуществовали ещё по крайней мере 10-15 лет, и только в начале 1980-х годов микропроцессоры вытеснили своих старших собратьев. Надо сказать, что переход к микропроцессорам позволил потом создать персональные компьютеры, которые теперь проникли почти в каждый дом.

Первый микропроцессор Intel 4004 был представлен 15 ноября 1971 года корпорацией Intel. Он содержал 2300 транзисторов, работал на тактовой частоте 92,6 кГц (в документе говорится, что цикл инструкции длится 10,8 микросекунд, а в рекламных материалах Intel - 108 кГц) и стоил 300 долл.

За годы существования технологии микропроцессоров было разработано множество различных их архитектур. Многие из них (в дополненном и усовершенствованном виде) используются и поныне. Например Intel x86, развившаяся вначале в 32-битную IA-32, а позже в 64-битную x86-64 (которая у Intel называется EM64T). Процессоры архитектуры x86 вначале использовались только в персональных компьютерах компании IBM (IBM PC), но в настоящее время всё более активно используются во всех областях компьютерной индустрии, от суперкомпьютеров до встраиваемых решений. Также можно перечислить такие архитектуры как Alpha, POWER, SPARC, PA-RISC, MIPS (RISC-архитектуры) и IA-64 (EPIC-архитектура).

Большинство процессоров, используемых в настоящее время, являются Intel-совместимыми, то есть имеют набор инструкций и интерфейсы программирования, реализованные в процессорах компании Intel.

Наиболее популярные процессоры сегодня производят фирмы Intel, AMD и IBM. Среди процессоров от Intel: 8086, i286 (в компьютерном сленге называется «двойка», «двушка»), i386 («тройка», «трёшка»), i486 («четвёрка»), Pentium («пень», «пенёк», «второй пень», «третий пень» и т. д. Наблюдается также возврат названий: Pentium III называют «тройкой», Pentium 4 - «четвёркой»), Pentium II, Pentium III, Celeron (упрощённый вариант Pentium), Pentium 4, Core 2 Quad, Core i7, Xeon (серия процессоров для серверов), Itanium, Atom (серия процессоров для встраиваемой техники) и др. AMD имеет в своей линейке процессоры архитектуры x86 (аналоги 80386 и 80486, семейство K6 и семейство K7 - Athlon, Duron, Sempron) и x86-64 (Athlon 64, Athlon 64 X2, Phenom, Opteron и др.). Процессоры IBM (POWER6, POWER7, Xenon, PowerPC) используются в суперкомпьютерах, в видеоприставках 7го поколения, встраиваемой технике; ранее использовались в компьютерах фирмы Apple.

Доли компаний на рынке.

По данным компании IDC, по итогам 2009 г. доля корпорации Intel составила 79,7%, доля AMD – 20,1%.

Доли по годам:

    Российские микропроцессоры .

Разработкой микропроцессоров в России занимаются ЗАО «МЦСТ» и НИИСИ РАН. Также разработку специализированных микропроцессоров, ориентированных на создание нейронных систем и цифровую обработку сигналов, ведут НТЦ «Модуль» и ГУП НПЦ «ЭЛВИС». Ряд серий микропроцессоров также производит ОАО «Ангстрем».

НИИСИ разрабатывает процессоры серии Комдив на основе архитектуры MIPS. Техпроцесс - 0.5 мкм, 0.3 мкм; КНИ.

    КОМДИВ32, 1890ВМ1Т, в том числе в варианте КОМДИВ32-С (5890ВЕ1Т), стойком к воздействию факторов космического пространства (ионизирующему излучению)

    КОМДИВ64, КОМДИВ64-СМП

    Арифметический сопроцессор КОМДИВ128

НТЦ Модуль разработал и предлагает микропроцессоры семейства NeuroMatrix:

    1998 год, 1879ВМ1 (NM6403) - высокопроизводительный специализированный микропроцессор цифровой обработки сигналов с векторно-конвейерной VLIW/SIMD архитектурой. Технология изготовления - КМОП 500 нм, частота 40 МГц.

    2007 год, 1879ВМ2 (NM6404) - модификация 1879ВМ1 с увеличенной до 80 МГц тактовой частотой и 2Мбитным ОЗУ, размещённым на кристалле процессора. Технология изготовления - 250 нм КМОП.

    2009 год, 1879ВМ4 (NM6405) - высокопроизводительный процессор цифровой обработки сигналов с векторно-конвейерной VLIW/SIMD архитектурой на базе запатентованного 64-разрядного процессорного ядра NeuroMatrix. Технология изготовления - 250 нм КМОП, тактовая частота 150 МГц.

Благодаря ряду аппаратных особенностей микропроцессоры этой серии могут быть использованы не только в качестве специализированных процессоров цифровой обработки сигналов, но и для создания нейронных сетей.

ГУП НПЦ ЭЛВИС разрабатывает и производит микропроцессоры серии «Мультикор», отличительной особенностью которых является несимметричная многоядерность. При этом физически в одной микросхеме содержатся одно CPU RISC-ядро с архитектурой MIPS32, выполняющее функции центрального процессора системы, и одно или более ядер специализированного процессора-акселератора для цифровой обработки сигналов с плавающей/фиксированной точкой ELcore-xx (ELcore = Elvees’s core), основанного на «гарвардской» архитектуре. CPU-ядро является ведущим в конфигурации микросхемы и выполняет основную программу. Для CPU-ядра обеспечен доступ к ресурсам DSP-ядра, являющегося ведомым по отношению к CPU-ядру. CPU микросхемы поддерживает ядро ОС Linux 2.6.19 или ОС жесткого реального времени QNX 6.3 (Neutrino).

    2004 год, 1892ВМ3Т (MC-12) - однокристальная микропроцессорная система с двумя ядрами. Центральный процессор - MIPS32, сигнальный сопроцессор - SISD ядро ELcore-14. Технология изготовления - КМОП 250 нм, частота 80 МГц. Пиковая производительность 240 MFLOPs (32 бита).

    2004 год, 1892ВМ2Я (MC-24) - однокристальная микропроцессорная система с двумя ядрами. Центральный процессор - MIPS32, сигнальный сопроцессор - SIMD ядро ELcore-24. Технология изготовления - КМОП 250 нм, частота 80 МГц. Пиковая производительность 480 MFLOPs (32 бита).

    2006 год, 1892ВМ5Я (MC-0226) - однокристальная микропроцессорная система с тремя ядрами. Центральный процессор - MIPS32, 2 сигнальных сопроцессора - MIMD ядро ELcore-26. Технология изготовления - КМОП 250 нм, частота 100 МГц. Пиковая производительность 1200 MFLOPs (32 бита).

    2008 годNVCom-01 («Навиком») - однокристальная микропроцессорная система с тремя ядрами. Центральный процессор - MIPS32, 2 сигнальных сопроцессора - MIMD DSP-кластер DELCore-30 (Dual ELVEES Core). Технология изготовления - КМОП 130 нм, частота 300 МГц. Пиковая производительность 3600 MFLOPs (32 бита). Разработан в качестве телекоммуникационного микропроцессора, содержит встроенную функцию 48-канальной ГЛОНАСС/GPS навигации.

В качестве перспективного проекта НПЦ ЭЛВИС представлен MC-0428 - процессор MultiForce - однокристальная микропроцессорная система с одним центральным процессором и четырьмя специализированными ядрами. Технология изготовления - КМОП 130 нм, частота до 340 МГц. Пиковая производительность ожидается не менее 8000 MFLOPs (32 бита).

ОАО «Ангстрем (компания)» производит (не разрабатывает) следующие серии микропроцессоров:

    1839 - 32-разрядный VAX-11/750-совместимый микропроцессорный комплект из 6 микросхем. Технология изготовления - КМОП, тактовая частота 10 МГц.

    1836ВМ3 - 16-разрядный LSI-11/23-совместимый микропроцессор. Программно совместим с PDP-11 фирмы DEC. Технология изготовления - КМОП, тактовая частота 16 МГц.

    1806ВМ2 - 16-разрядный LSI/2-совместимый микропроцессор. Программно совместим с LCI-11 фирмы DEC.Технология изготовления - КМОП, тактовая частота 5 МГц.

    Л1876ВМ1 32-разрядный RISC микропроцессор. Технология изготовления - КМОП, тактовая частота 25 МГц.

Из собственных разработок Ангстрема можно отметить однокристальную 8-разрядную RISC микроЭВМ Тесей.

Компанией МЦСТ разработано и внедрено в производство семейство универсальных SPARC-совместимых RISC-микропроцессоры с проектными нормами 130 и 350 нм и частотами от 150 до 500 МГц (подробнее см. статью о серии - МЦСТ-R и о вычислительных комплексах на их основе Эльбрус-90микро). Также разработан VLIW-процессор Эльбрус с оригинальной архитектурой ELBRUS, используется в комплексах Эльбрус-3М1). Основные потребители российских микропроцессоров - предприятия ВПК.

В советское время одним из самых востребованных из-за его непосредственной простоты и понятности, стал задействованный в учебных целях МПК КР580 - набор микросхем, аналогичных набору микросхем Intel 82xx. Использовался в отечественных компьютерах, таких как Радио 86РК, ЮТ-88, Микроша, и т. д.

    Микропроцессоры будущего.

Не технология, а стоимость станет самым серьезным препятствием при разработках микропроцессоры будущего.

Через 15 лет микропроцессоры будут работать на гигагерцевых частотах, а число транзисторов на кристалл размером с ноготь составит миллионы. Протяженность многослойных межсоединений, выполненных на кристалле с молекулярной точностью, составит более километра. На первом плане окажется проблема достижения максимального быстродействия межкомпонентных соединений, с которой поставщики ПК пытаются справиться и сегодня, поскольку скорости внутри ИС в грубом приближении впятеро выше, чем при обмене сигналами между ИС и платой. Большие трудности для разработчиков ИС создадут и задержки распространения сигналов между многочисленными металлическими слоями.

Более производительные ИС откроют в будущем возможности реализации многочисленных приложений ПК, ограниченных лишь нашей изобретательностью. Уже теперь микропроцессоры позволяют осуществлять такие функции, как распознавание рукописного текста и перевод с одного языка на другой. И все же препятствия на пути дальнейшего развития микросхемотехники существуют. Если это не технология, то что же?

Стоимостные барьеры

Одно из препятствий, мешающих развитию микропроцессорной техники и технологии, связано с высокой стоимостью строительства предприятия (завода) для полупроводникового производства, которая ныне превышает 1 млрд. долл. Сегодня существует около тысячи таких заводов; строительство порядка сотни таких заводов в период до 2012 г. обойдется еще дороже. К тому же эти затраты не идут ни в какое сравнение с расходами, которые потребуются для доведения новых микросхем до рынка. Например, разработка и внедрение первого микропроцессора Pentium обошлись компании Intel в сумму более 5 млрд. долл. Разработка микросхем 2012 г., независимо от того, будут ли они выполнены на основе RISC - или CISC -архитектуры, может обойтись в сумму около 10 млрд. долл.

Расходы на изготовление микросхем фактически признал в качестве ограничивающего фактора Гордон Мур из компании Intel. Муру это хорошо известно, так как он первым указал в 1965 г. на стратегическую тенденцию пропорционального уменьшения размера транзисторов в целях экономически эффективного изготовления более миниатюрных и быстродействующих микросхем повышенной функциональности (эту тенденцию затем стали называть «Законом Мура»). В соответствии с ней каждый год в продажу поступают все более быстродействующие и миниатюрные компьютеры.

Есть специалисты, утверждающие, что для развития микросхемотехники нет реальных препятствий и что при должном использовании технологии можно достичь гораздо большего, чем повышение продуктивности. Возможности воплощения в жизнь любых достижений, видимо, значительно шире. Можно ли воспользоваться завтрашней технологией, чтобы добиться большего прогресса в таких сферах, как образование и восприятие культурных ценностей? Ведь встречались и еще более странные вещи, даже в электронной промышленности.

Архитекторы кремниевых пластин

В попытках ускорить обработку информации путем минимизации задержек распространения сигналов разработчики стали размещать металлические токопроводящие дорожки возрастающей длины слоями. В то время как в конце восьмидесятых годов в ИС использовался только один слой металлизации, сегодня число таких слоев достигает четырех или пяти.

Хотя такая слоистая структура будет быстро прогрессировать и число слоев увеличится до восьми и более, возможности подобных металлических структур, связанные с прохождением сигналов, достигнут в конце концов предела и потребуются какие-то новые методы. Токопроводящие дорожки будут, скорее всего, медными, а не алюминиевыми, так как медь обладает лучшей электропроводностью. А вместо изолирующей пленки из двуокиси кремния для разделения токопроводящих дорожек на пластину будут осаждаться либо наноситься - с использованием центрифуги - фторированные окислы.

Это чудесное сочетание материалов понизит резистивно-емкостную постоянную времени проводников. Благодаря сведению к минимуму сопротивления металла и уменьшению диэлектрической проницаемости изолирующей пленки разработчики добьются ускорения прохождения сигналов. Именно в этом отношении решающую роль приобретает выбор технологий.

Важнейшие технологические достижения

Стоимостные и технологические вопросы в полупроводниковой промышленности тесно взаимосвязаны. Сегодня существует несколько технологических процессов изготовления микросхем; определяющая доля суммарных затрат на изготовление приборов приходится на процессы производства пластин. В число таких процессов в настоящее время входят литография, ионная имплантация, диффузия и окисление, осаждение, травление, очистка, планаризация и измерения.

Процесс производства микросхем начинается с закупки кремниевых пластин размером 100, 125, 150 и 200 мм. Крупные (pizza-size) пластины (300 мм), как ожидается, поступят в производство после 1998 г. Ведется, правда, в небольших масштабах разработка и 400-мм пластин.

Литография играет здесь ведущую роль. Это метод воспроизведения изображений, при котором точно копируется каждый схемный элемент, причем требуемый инструментарий также относится к числу наиболее дорогостоящих видов технологического оборудования. В ходе этого процесса установки фотолитографии с последовательным шаговым экспонированием, оснащенные прецизионной оптикой, фокусируют луч с длиной волны 365 нм (в скором времени это будет 248 нм, а затем и 193 нм) на пластину, покрытую светочувствительной пленкой фоторезиста. (К изготовителям установок с последовательным шаговым экспонированием, кварца и других материалов предъявляются все более жесткие требования, обусловленные переходом на более короткие длины волн). Далее следует травление или ионная имплантация. В результате селективного травления экспонированных пленок образуются канавки, заполняемые в дальнейшем металлом. Совершенно другой процесс представляет собой ионная имплантация, которая дает инженерам возможность с высокой точностью изменять электрические свойства кристалла путем внедрения в поверхность кремния заряженных атомов (ионов), ускоренных электрическим полем.

Диффузия и окисление осуществляются в реакторах, выполненных в виде 3,7-м вертикальной трубы, в которых помещаются сотни пластин. Данная технология нуждается в переходе к печам с быстрой загрузкой, но существующий метод доведен практически существу до совершенства и экономически эффективен.

Осаждение пленок также проводится в реакторах, но одновременно обрабатывается только одна пластина, чтозначительно замедляет производственный процесс. Если бы не громадные достижения в области вычислительной техники и программного обеспечения, работа заводской службы материально-технического обеспечения была бы просто кошмаром; по иронии судьбы она держится на той самой технике, созданию которой она способствует.

Реакторы для травления также обрабатывают по одной пластине и производят селективное удаление пленок алюминия, вольфрама, кремния, поликремния, двуокиси кремния и фоторезиста, а также бесчисленных остатков (загрязнений). Каждая пластина сотни раз подвергается очистке; поразительно, что ежедневный расход воды на типичном заводе составляет примерно 61 тыс. м3, что соответствует 15 футбольным полям, покрытым слоем воды толщиной 30 см. Это обычно создает серьезные проблемы для служб материально-технического обеспечения, а страны, лишенные доступа к дешевым водным ресурсам, могут столкнуться с экономическими трудностями. В этом процессе расходуется также очень много электроэнергии.

Планаризация (получение плоских пленок) может осуществляться способом влажной химической и механической полировки на установке, представляющей собой модифицированный станок для предварительной полировки кремния. Этот метод лишь в последнее время начинает получать широкое распространение в полупроводниковой промышленности, что обусловлено проблемами однородности пленок, надежности оборудования и наличием конкурирующих технологий.

Наконец, коснемся измерений. Попросту говоря, дело заключается в следующем. Если вы не можете измерить ширину 0,1-мкм токопроводящей дорожки, то вы не знаете, действительно ли эта дорожка имеет ширину 0,1-мкм. Чтобы обеспечить получение высокой точности, средствам контроля размеров на заводской производственной линии пришлось пройти долгий путь. Однако, если учесть, что по затратам эти средства соперничают с установками фотолитографии с последовательным шаговым экспонированием, вы, возможно, предпочтете заменить техника, уставившегося в замысловатый микроскоп, какой-либо «разумной» системой.

Путь прогресса

Пределы, обусловленные существующими технологиями, и законы физики не помешают лучшим в мире инженерам создать в течение предстоящих 15 лет поражающие воображение микросхемы. Необходимые затраты производят впечатление, но и они, видимо, не станут реальным препятствием. Представляя себе микропроцессоры 2012 г. с сотнями миллионов транзисторов, мы видим открывающийся новый мир. Не будем использовать штампы типа «цифровая эра» или «эра информации», так как теперь это уже устаревшие термины. Но независимо от терминологии или времени перед нами всегда будет возникать вопрос: «Какие же еще препятствия встретятся на пути прогресса?»

Заключение

ЭВМ получили широкое распространение, начиная с 50-х годов. Прежде это были очень большие и дорогие устройства, используемые лишь в государственных учреждениях и крупных фирмах. Размеры и форма цифровых ЭВМ неузнаваемо изменились в результате разработки новых устройств, называемых микропроцессорами.

В данной работе объектом изучения послужили микропроцессоры ПК. Были раскрыты основные понятия, используемые в выбранной теме; дана классификация микропроцессоров и краткая характеристика их элементов; рассмотрена структура, основные характеристики, история развития микропроцессоров ПК, российские микропроцессоры, микропроцессоры настоящего и будущего.

Успехи, достигнутые за время существования микропроцессора, четверть века назад невозможно было и вообразить. Если так будет продолжаться и впредь, то, вполне возможно, к 2011 г. микропроцессоры будут работать на тактовой частоте 10 гигагерц (ГГц). При этом число транзисторов на каждом таком процессоре достигнет 1 миллиарда, а вычислительная мощность – 100 миллиардов операций в секунду. Трудно себе даже представить, насколько возросшая мощь процессоров расширит сферу их применения, причем не только в бизнесе и в области коммуникаций. Как дома, так и на рабочих местах возникнет новая информационная среда, откроются невиданные ранее возможности.

Будущее микропроцессорной техники связано сегодня с двумя новыми направлениями - нанотехнологиями и квантовыми вычислительными системами. Эти пока еще главным образом теоретические исследования касаются использования в качестве компонентов логических схем молекул и даже субатомных частиц: основой для вычислений должны служить не электрические цепи, как сейчас, а положение отдельных атомов или направление вращения электронов. Если "микроскопические" компьютеры будут созданы, то они обойдут современные машины по многим параметрам.

После рассмотрения этой темы, стало более чёткое представление устройстве процессора, его характеристиках и его функциях. Так же было узнано о разнообразии микропроцессоров, их фирм производителей, а так же об их эволюции на протяжении всей истории ПК.

Список используемой литературы

История развития средств вычислительной техники Первые... вычислительные машины: XX век В истории вычислительной техники существует своеобразная периодизация... пятого поколения: компьютеры на сверхсложных микропроцессорах с параллельно-векторной структурой, ...

Без современной электроники жизнь человека уже сложно представить. Конечно, существует немало мест, где о современных технологиях до сих пор и не слышали, не то, чтобы пользоваться. Но все же подавляющая часть населения Земли так или иначе связана с электроникой, ставшей неотъемлемой частью нашего быта и работы.

Человек издревле использовал различные приспособления для того, чтобы сделать какие-то производственные процессы более эффективными или же сделать более комфортным свое собственное существование. Настоящий прорыв случился в конце 40-х годов 20-го века, когда были изобретены транзисторы. Первыми были биполярные транзисторы , используемые до сих пор. За ними последовали МОП-транзисторы (металл-оксидид-полупроводниковые).

Первые транзисторы такого типа были более дорогими и менее надежными, чем их биполярные «родственники». Но, начиная с 1964 года, в электронике стали использовать интегральные микросхемы, основой которых как раз и стали МОП-транзисторы. Это впоследствии позволило снизить стоимость производства электронных устройств и значительно снизить размеры гаджетов и систем с одновременным снижением энергопотребления. С течением времени микросхемы становились все более сложными и совершенными, заменяя собой крупные блоки транзисторов, что открыло возможность уменьшать размеры электронных устройств.

К концу 60-х годов стали распространяться микросхемы с довольно большим числом логических вентилей (большим для того времени): 100 и больше. Это позволило использовать новые элементы для создания компьютеров. Разработчики электронных вычислительных машин относительно быстро признали, что увеличение плотности размещения транзисторов в микросхеме позволит, в конце концов, создать компьютерный процессор в виде одного-единственного чипа. Изначально интегральные микросхемы с МОП-транзисторами использовались для создания терминалов, калькуляторов, их стали применять разработчики бортовых систем пассажирского и военного транспорта.

Ключевой момент

Сегодня большинство специалистов электронщиков признают, что старт качественно нового этапа развития электроники начался в 1971 году, когда появился 4-х битный процессор 4004 от Intel, впоследствии замененный 8-битным чипом 8008. Он появился после того, как небольших размеров японская компания с названием Nippon Calculating Machine, Ltd. (впоследствии Busicom Corp.) заказала всего 12 микросхем у Intel. Компании эти микросхемы были нужны для своих калькуляторов, а логический дизайн чипов был разработан сотрудником компании-заказчика). В то время для каждого устройства разрабатывался новый набор микросхем, выполнявших узкоспециализированные функции.

При выполнении заказа Маршиан Эдвард Хофф предложил снизить число микросхем для нового устройства японской компании, введя использование центрального процессора. Именно он, по задумке инженера, должен был стать центром обработки данных и выполнения арифметических и логических функций. Процессор должен был заменить собой сразу несколько микросхем. Руководства обеих компаний одобрили эту идею. Осенью 1969 года Хофф при помощи Стэнли Мэйзора предложил новую архитектуру микросхем, число которых было сокращено всего до 4. Часть предложенных элементов - 4-х разрядный центральный процессор, ПЗУ и ОЗУ.

Сам процессор смог разработать Федерико Фаджин, физик из Италии, который стал главным проектировщиком семьи MCS-4 в Intel. Именно он, благодаря знанию технологии МОП смог создать процессор, реализовав идею Хоффа. Кстати, первая в мире коммерческая микросхема, где использовалась технология кремниевых затворов, была разработана тоже им. Она носила название Fairchild 3708.

Фаджин, будучи сотрудником Intel, смог создать новый метод проектирования систем произвольной логики. Ему в его работе помогал Масатоси Сима, работавший в то время инженером в Busicom. Фаджин и Сима разработали впоследствии микропроцессор Zilog Z80 , который, кстати, производится и сейчас.


Архитектура процессора Intel 4004

Но главное случилось 15 ноября 1971 года. Это дата появления первого микропроцессора от Intel, чипа 4004 . Его стоимость на то время составила 200 долларов. Всего на одном кристалле были реализованы практически все функции процессора большой ЭВМ. Его анонсировали в ноябре 1971 года в журнале Electronic News.

Характеристики процессора:


  • Дата появления: 15 ноября 1971 года
  • Количество транзисторов: 2300
  • Площадь кристалла: 12 мм²
  • Техпроцесс: 10 мкм (P-channel silicon pie MOS technology)
  • Тактовая частота: 740 кГц (конкретно от 500 до 740,740… кГц, так как clock period 2..1,35мкс (или 92,6кГц?)
  • Разрядность регистров: 4 бит
  • Количество регистров: 16 (16 четырёхбитных могут быть использованы как 8 восьмибитных)
  • Количество портов: 16 четырёхбитных входных и 16 четырёхбитных выходных
  • Разрядность шины данных: 4 бита
  • Разрядность шины адреса: 12 бит
  • Гарвардская архитектура
  • Стек: внутренний 3-уровневый
  • Память команд (ПЗУ/ROM): 4 килобайта (32768 бит)
  • Объём адресуемой памяти (ОЗУ/RAM): 640 байт (5120 бит)
  • Количество инструкций: 46 (из которых 41 - 8-разрядные и 5 - 16-разрядные)
  • Цикл инструкций: 10,8 микросекунд
  • Напряжение питания: −15 В (pMOS)
  • Рабочая температура: от 0 до +70C
  • Условия хранения и эксплуатации: от -40 до +85C
  • Разъём: DIP16 (микросхема непосредственно впаивалась в печатную плату либо устанавливалась в специальный слот)
  • Корпус: 16-контактный DIP (1 вид пластиковый или 3 вида керамического, например, C4004(белая керамика с серыми полосками), С4004(белая керамика), D4004 (черно-серая керамика), P4004 (чёрный пластик))
  • Тип поставки: отдельно и в комплектах MCS-4 (ROM, RAM, I/O, CPU)
В секунду этот процессор выполнял от 60 000 до 93 000 инструкций. В то же время, один из первых электронных компьютеров, ЭНИАК , мог выполнять лишь 5000 инструкций в секунду. При этом ЭНИАК занимал 280 квадратных метров, весил 27 тонн и потреблял 174 кВт энергии.

4004 процессор не стал слишком популярным. Повсеместно стал использоваться 8080-й чип, который можно назвать «правнуком» 4004-го.

Калькуляторы и компьютеры

В 1971 году у компании Intel были конкуренты. Например, Mostek, компания, разрабатывавшая полупроводниковые элементы и устройства на их основе, создала первый в мире «калькулятор на чипе», MK6010 .

В июне 1971 года компания Texas Instruments запустила медиакампанию, посвященную преимуществам ее процессора. В то время Datapoint 2200 на основе TMX 1795 описывался, как «мощный компьютер, превосходящий оригинальный вариант», где имелось в виду, что возможности Datapoint 2200 на основе TMX 1795 значительно превосходили возможности Datapoint 2200 на основе биполярных транзисторов. Но СТС, после проверки работы нового чипа, отвергла его, продолжив использовать биполярные чипы. Intel все еще работала над собственным процессором.

Спустя некоторое время TI, убедившись в отсутствии спроса на TMХ 1795 (впоследствии - TMC 1795), завершила медиакампанию и прекратила производство системы. Но в историю вошел именно этот чип в качестве первого 8-битного процессора.

В 1971 году СТС потеряла интерес к единому процессору для своих систем, передав все права на новый чип Intel. Компания не стала отказываться от этой возможности, и продолжила разработку 8008 чипа , успешно предложив его ряду других компаний. В апреле 1972 года ей удалось поставить сотни тысяч таких процессоров. Два года спустя 8008 процессор был заменен на новый 8080, после чего пришел 8086 и началась эра систем на x86 архитектуре. Сейчас, работая на мощном ПК или ноутбуке, стоит помнить, что архитектура такой системы была разработана много лет назад для программируемого терминала Datapoint 2200.

Intel тогда использовала более совершенную технологию, которая и обеспечила преимущество ее процессоров. Они были быстрыми и относительно экономными в плане потребления энергии. Плюс ко всему, в микросхемах Intel плотность размещения транзисторов была выше, чем в чипе TI, что позволило снизить размеры процессоров. Плюс ко всему, важную роль играл и маркетинг, в этой сфере Intel тоже сделала ряд удачных шагов, что обеспечило известность разработок компании.

Как бы там ни было, ситуация с первенством в разработке первых процессоров далеко не так однозначна, как принято считать. Здесь было сразу несколько первопроходцев, но популярной в последствии стала разработка только одного из них. Собственно, с модернизированными «потомками» этой технологии, мы все имеем дело сегодня, в 21-м веке.

Теги: Добавить метки

Вы используете компьютер или мобильное устройство, чтобы читать данный топик в настоящее время. Компьютер или мобильное устройство для выполнения этих действий использует микропроцессор. Микропроцессор является сердцем любого устройства, сервера или ноутбука. Существует много марок микропроцессоров от самых разных производителей, но все они делают примерно то же самое и примерно таким же образом.
Микропроцессор - также известный как процессор или центральный блок обработки - это вычислительный двигатель, который изготовлен на одном кристалле. Первым микропроцессором был Intel 4004, он появился в 1971 году и был не столь мощным. Он мог складывать и вычитать, и это только 4 бита за один раз. Удивительным процессор был потому, что был выполнен на одном чипе. Вы спросите почему? А я отвечу: инженеры в то время производили процессоры либо из нескольких чипов или из дискретных компонентов (транзисторы использовались в отдельных корпусах).

Если вы когда-либо задавались вопросом, что микропроцессор делает в компьютере, как внешне выглядит или каковы его различия по сравнению с другими типами микропроцессоров, то ступайте под кат - там всё самое интересное, и подробности.

Прогресс в производстве микропроцессоров: Intel

Первым микропроцессором, ставшим впоследствии сердцем простого домашнего компьютера, был Intel 8080 - полный 8-разрядный компьютер на одном чипе, появившийся в 1974 году. Первый микропроцессор стал причиной реального всплеска на рынке. Позже в 1979 году была выпущена новая модель - Intel 8088. Если вы знакомы с рынком ПК и его историей, то знаете, что рынок ПК переехал от Intel 8088 к Intel 80286, а тот к Intel 80386 и Intel 80486, а после к Pentium, Pentium II, Pentium III и Pentium 4. Все эти микропроцессоры сделаны Intel, и все они являются улучшениями базовой конструкции Intel 8088. Pentium 4 может выполнить любой код, но делает он это в 5000 раз быстрее.

В 2004 году Intel представила микропроцессоры с несколькими ядрами и миллионным количеством транзисторов, но даже эти микропроцессоры следовали общим правилам, что и ранее изготовленные чипы. Дополнительная информация в таблице:

  • Дата : является годом, когда процессор был впервые представлен. Многие процессоры были выпущены вновь, но уже с более высокими тактовыми частотами, и это продолжалось в течение многих лет после оригинальной даты выпуска
  • Транзисторы : это количество транзисторов на кристалле. Вы можете видеть, что число транзисторов на одном кристалле неуклонно растёт на протяжении многих лет
  • Микрон : ширина в микронах наименьшей проволоки на чипе. Для сравнения могу привести человеческий волос, имеющий толщину около 100 мкм. Поскольку размеры были всё меньше и меньше, число транзисторов возрастало
  • Тактовая частота : максимальная скорость, которую чип может развить. О тактовой частоте я расскажу чуточку позже
  • Ширина (шина) данных : является шириной АЛУ (арифметико-логическое устройство). 8-битное АЛУ может добавить, вычесть, умножить и т. д. Во многих случаях шина данных имеет ту же ширину, как АЛУ, но не всегда. Intel 8088 был 16-битным и имел 8-битную шину, в то время как современные модели Pentium 64-битные.
  • MIPS : данная колонка в таблице выступает за отображение количества операций в секунду. Является единицей измерения для микропроцессоров. Современные процессоры могут сделать столько всяких штук, что сегодняшние рейтинги, представленные в таблице, потеряют всякий смысл. Зато вы можете ощутить относительную мощность микропроцессоров тех времён
Из этой таблицы видно, что, в общем, существует связь между тактовой частотой и MIPS (количеством совершаемых операций в секунду). Максимальная тактовая частота является функцией производственного процессора. Существует также зависимость между количеством транзисторов и количеством операций в секунду. Например, Intel 8088 с тактовой частотой 5 МГц (а сейчас 2.5-3 ГГц) выполняет только 0.33 MIPS (около одной инструкции для каждого 15 такта). Современные процессоры могут часто выполнять две инструкции за такт. Это повышение напрямую связано с числом транзисторов на чипе и я расскажу об этом тоже далее.

Что такое чип?

Чип также называется интегральной схемой. Обычно это небольшой, тонкий кусочек кремния, на которой транзисторы, входящие в состав микропроцессора были выгравированы. Чип может быть размером в один дюйм, но при этом содержать в себе десятки миллионов транзисторов. Более простые процессоры могут состоять из нескольких тысяч транзисторов, выгравированных на чипе всего в несколько квадратных миллиметров.

Как это работает


Intel Pentium 4


Чтобы понять, как работает микропроцессор, было бы полезно заглянуть внутрь и узнать о его внутренностях. В процессе вы также можете узнать о языке ассемблера - родном языке микропроцессора, и многое из того, что инженеры могут сделать, чтобы увеличить скорость процессора.

Микропроцессор выполняет коллекцию машинных инструкций, которые сообщают процессору, что делать. Основываясь на инструкциях, микропроцессор делает три основные вещи:

  • Используя своё АЛУ (арифметико-логическое устройство), микропроцессор может выполнять математические операции. Например, сложение, вычитание, умножение и деление. Современные микропроцессоры способны выполнять чрезвычайно сложные операции
  • Микропроцессор может перемещать данные из одного места памяти в другое
  • Микропроцессор может принимать решения и перейти к новому набору инструкций, основанному на этих решениях

Говоря прямо, микропроцессор делает сложные штуки, но выше я описал три основных вида деятельности. Следующая диаграмма показывает очень простой микропроцессор, способный делать эти три вещи. Этот микропроцессор имеет:

  • Шина адреса (8, 16 или 32 бита), которая посылает обращение к памяти
  • Шина данных (8, 16 или 32 бита), которая передаёт данные в память или принимает данные от памяти
  • RD (read, чтение) и WR (write, запись) сообщают памяти, хотят ли они произвести установку или же получить адресованное местоположение
  • Линия часов, которая позволяет просмотреть последовательность тактовых импульсов процессора
  • Линия сброса, которая сбрасывает счётчик команд к нулю и перезапускает выполнение

Память микропроцессора

Ранее мы говорили о шинах адреса и данных, а также о линиях чтения и записи. Всё это соединяется либо с ОЗУ (оперативная память) или с ПЗУ (постоянная память или постоянное запоминающее устройство, ПЗУ) - как правило, с обеими. В нашем примере микропроцессора мы имеем широкую адресную шину 8 бит и такую же широкую шину данных - тоже 8 бит. Это означает, что микропроцессор может обратиться 2^8 к 256 байт памяти, и может читать и писать 8 бит памяти за один раз. Давайте предположим, что этот простой микропроцессор имеет 128 байт встроенной памяти, начиная с адреса 0 и 128 байт оперативной памяти, начиная с адреса 128.

Оперативная память выступает за память только для чтения. Микросхема постоянной памяти запрограммирована с постоянными предустановленными заданными байтами. Шинный адрес сообщает чипу оперативной памяти, который байт, добраться и поместиться на шине данных. Когда линия чтения изменяет своё состояние, микросхема постоянной памяти представляет выбранный байт на шину данных.

Оперативная память выступает за оперативную память, лол. ОЗУ содержит байт информации, и микропроцессор может читать или писать на эти байты в зависимости от того, сигнализирует ли линия чтения или записи. Одна из проблем, которую можно встретить в сегодняшних чипах - они забывают всё, как только уходит энергия. Поэтому компьютер должен обладать оперативной памятью.


RAM chip или чип постоянного запоминающего устройства (ПЗУ)


Кстати, почти все компьютеры содержат некоторое количество оперативной памяти. На персональном компьютере постоянное запоминающее устройство называется BIOS (Basic Input/Output System). При запуске микропроцессор начинает выполнять инструкции, которые он находит в BIOS. Инструкции BIOS, к слову, тоже выполняют свои роли: выполняют проверку аппаратных средств, а затем вся информация поступает на жёсткий диск, чтобы создать загрузочный сектор. Загрузочный сектор - это одна небольшая программа, и BIOS хранит её в памяти после прочтения её с диска. Затем микропроцессор начинает выполнять инструкции загрузочного сектора из оперативной памяти. Программа загрузочного сектора покажет микропроцессору, что нужно ещё взять с собой с жесткого диска в оперативную память, а затем выполняет всё это и так далее. Это - то, как микропроцессор загружает и выполняет всю операционную систему.

Микропроцессорные инструкции

Даже невероятно простой микропроцессор, описанный мною только что, будет иметь довольно большой набор инструкций, которые он может выполнять. Коллекция инструкций реализована в виде битовых шаблонов, каждый из которых имеет различное значение, когда загражается в сектор команд. Люди не особенно хорошо запоминают битовые шаблоны, так как это набор коротких слов. К слову, этот набор коротких слов называется языком ассемблера процессора. Ассемблер может переводить слова в битовый шаблон очень легко, а затем старания ассемблера будут помещены в память для микропроцессора с целью выполнения.

Вот набор инструкций языка ассемблера:

  • LOADA mem - загрузить в регистр с адресом памяти
  • LOADB mem - загрузить в регистр B от адреса памяти
  • CONB mem - загрузить постоянное значение в регистр B
  • SAVEB mem - сохранить регистр B в адрес памяти
  • SAVEC mem - сохранить регистр C в адрес памяти
  • ADD - добавить A и B и сохранить результат в C
  • SUB - вычесть A и B и сохранить результат в C
  • MUL - умножить A и B и сохранить результат в C
  • DIV - разделить A и B и сохранить результат в C
  • COM - сравнить A и B и сохранить результат в тесте
  • JUMP addr - перейти по адресу
  • JEQ addr - перейти, если равно, для решения
  • JNEQ addr - перейти, если не равно, для решения
  • JG addr - перейти, если больше, для решения
  • JGE addr - перейти, если больше или равно, для решения
  • JL addr - перейти, если меньше, для решения
  • JLE addr - перейти, если меньше или равно, для решения
  • STOP - остановить выполнение
Язык ассемблера
Компилятор C переводит этот C-код на языке ассемблера. Если предположить, что оперативная память начинается с адреса 128 в этом процессоре, и постоянное запоминающее устройство (в котором содержится программа на языке ассемблера) начинается с адреса 0, то для нашего простого микропроцессора ассемблер может выглядеть следующим образом:

// Assume a is at address 128// Assume F is at address 1290 CONB 1 // a=1;1 SAVEB 1282 CONB 1 // f=1;3 SAVEB 1294 LOADA 128 // if a > 5 the jump to 175 CONB 56 COM7 JG 178 LOADA 129 // f=f*a;9 LOADB 12810 MUL11 SAVEC 12912 LOADA 128 // a=a+1;13 CONB 114 ADD15 SAVEC 12816 JUMP 4 // loop back to if17 STOP

Постоянное запоминающее устройство (ПЗУ)
Таким образом, теперь вопрос: «Как все эти инструкции интегрируются с постоянным запоминающим устройством?». Я поясню, конечно: каждая из этих команд на языке ассемблера должна быть представлена в виде двоичного числа. Для простоты предположим, что каждая команда на языке ассемблера присваивает себе уникальный номер. Например, это будет выглядеть так:

  • LOADA - 1
  • LOADB - 2
  • CONB - 3
  • SAVEB - 4
  • SAVEC mem - 5
  • ADD - 6
  • SUB - 7
  • MUL - 8
  • DIV - 9
  • COM - 10
  • JUMP addr - 11
  • JEQ addr - 12
  • JNEQ addr - 13
  • JG addr - 14
  • JGE addr - 15
  • JL addr - 16
  • JLE addr - 17
  • STOP - 18
Данные цифры будут известны как коды операций. В постоянном запоминающем устройстве наша маленькая программа будет выглядеть следующим образом:

// Assume a is at address 128// Assume F is at address 129Addr opcode/value0 3 // CONB 11 12 4 // SAVEB 1283 1284 3 // CONB 15 16 4 // SAVEB 1297 1298 1 // LOADA 1289 12810 3 // CONB 511 512 10 // COM13 14 // JG 1714 3115 1 // LOADA 12916 12917 2 // LOADB 12818 12819 8 // MUL20 5 // SAVEC 12921 12922 1 // LOADA 12823 12824 3 // CONB 125 126 6 // ADD27 5 // SAVEC 12828 12829 11 // JUMP 430 831 18 // STOP

Вы видите, что 7 линий C-кода стали 18 линиями ассемблера, и это всё стало 32 байтами в постоянном запоминающем устройстве.

Декодирование
Инструкция декодирования должна превратить каждый из кодов операций в набор сигналов, которые будут управлять различными компонентами внутри микропроцессора. Давайте возьмём инструкции ADD в качестве примера и посмотрим, что она должна будет сделать. Итак:

  • 1. В первом такте необходимо загрузить саму инструкцию, поэтому декодеру нужно: активировать тремя состояниями буфер для счётчика команд, активировать линию чтения (RD), активировать данные в трёх штатах буфера в регистре команд
  • 2. Во втором такте инструкция ADD декодируется. Тут нужно сделать совсем немного: установить операцию арифметико-логического устройства (АЛУ) в регистр C
  • 3. Во время третьего такта программный счётчик увеличивается (в теории это может перекрываться во втором такте)
Каждая инструкция может быть разбита в виде набора секвенированных операций - таких, какие мы только что просмотрели. Они манипулируют компонентами микропроцессора в правильном порядке. Некоторые указания, как, например, инструкция ADD, может занять два-три такта. Другие могут занять пять или шесть тактов.

Подойдём к концу

Количество транзисторов имеет огромное влияние на производительность процессора. Как можно заметить выше, типичный микропроцессор Intel 8088 мог выполнять 15 циклов. Чем больше транзисторов, тем выше производительность - всё просто. Большое количество транзисторов также допускает такую технологию, как конвейерная обработка.

Конвейерная архитектура складывается из выполнения команд. Это может занять пять циклов для выполнения одной команды, но не может быть пять инструкций на разных стадиях исполнения одновременно. Таким образом, похоже, что одна команда завершает каждый тактовый цикл.

Все эти тенденции позволяют расти количеству транзисторов, что приводит к многомиллионным транзисторным тяжеловесам, которые доступны сегодня. Подобные процессоры могут выполнять около миллиарда операций в секунду - только представьте себе. Кстати, сейчас многие производители стали интересоваться выпуском 64-битных мобильных процессоров и очевидно наступает очередная волна, только на сей раз королём моды является 64-разрядная архитектура. Может и я доберусь в ближайшее время до этой темы и поведаю вам, как же на самом деле это работает. На этом, пожалуй, всё на сегодня. Надеюсь, вам было интересно и вы узнали много нового.