С миру по нитке

Как устроена солнечная батарея? Принцип работы солнечной батареи: как устроена и работает солнечная панель

Мы часто пишем про различные виды альтернативной энергетики, в том числе про солнечную. Этой статьей начинается цикл статей про принципы работы различных устройств работающих на возобновляемой энергии. И первое что будет рассмотрено - солнечные батареи. Солнечная энергия в последнее время используется повсюду: в естественном освещении помещений, нагрева воды, сушки и иногда даже в приготовлении пищи. Однако самым важным использованием энергии солнца является, пожалуй, генерация электричества. И главный элемент такой генерации - солнечная батарея!

Строение солнечных батарей


Солнечная батарея состоит из фотоэлементов, соединенных последовательно и параллельно. Все фотоэлементы располагаются на каркасе из непроводящих материалов. Такая конфигурация позволяет собирать солнечные батареи требуемых характеристик (тока и напряжения). Кроме того, это позволяет заменять вышедшие из строя фотоэлементы простой заменой.

Принцип работы

Принцип работы фотоэлементов из которых состоит солнечная батарея основан на фотогальваническом эффекте. Этот эффект наблюдал еще Александр Эдмонд Беккерель в 1839 году. Впоследствии работы Эйнштейна в области фотоэффекта позволили описать явление количественно. Опыты Беккереля показали, что лучистую энергию солнца можно трансформировать в электричество с помощью специальных полупроводников, которые позже получили название фотоэлементы.

Вообще такой способ получения электричества должен быть наиболее эффективным, потому что является одноступенчатым. По сравнению с другой технологией преобразования солнечной энергии через термодинамический переход (Лучи -> Нагревание воды -> Пар -> Вращение турбины -> Электричество), меньше энергии теряется на переходы.

Строение фотоэлемента


Фотоэлемент на основе полупроводников состоит из двух слоев с разной проводимостью. К слоям с разных сторон подпаиваются контакты, которые используются для подключения к внешней цепи. Роль катода играет слой с n-проводимостью (электронная проводимость), роль анода - p-слой (дырочная проводимость).

Ток в n-слоя создается движение электронов, которые «выбиваются» при попадании на них света за счет фотоэффекта. Ток в p-слое создается «движением дырок». «Дырка» - атом, который потерял электрон, соответственно, перескакивание электронов с «дырки» на «дырку» создает «движение» дырок, хотя в пространстве сами «дырки» конечно не двигаются.

На стыке слоев с n- и p-проводимостью создается p-n-переход. Получается своего рода диод, которые может создавать разность потенциалов за счет попадание лучей света.

Физический механизм действия

Когда лучи света попадают на n-слой, за счет фотоэффекта образуются свободные электроны. Кроме этого, они получают дополнительную энергию и способны «перепрыгнуть» через потенциальный барьер p-n-перехода. Концентрация электронов и дырок изменяется и образуется разность потенциалов. Если замкнуть внешнюю цепь через нее начнет течь ток.

Разность потенциалов (а соответственно и ЭДС) которую может создавать фотоэлемент зависит от многих факторов: интенсивности солнечного излучения, площади фотоэлемента, КПД конструкции, температуры (при нагревании проводимость падает).

Из чего делают фотоэлементы?

Самый первый в мире фотоэлемент появился в 1883 году в лаборатории Чарьза Фриттса. Он был изготовлен из селена, покрытого золотом. Увы, но такой набор материалов показал невысокие результаты - около 1% КПД.

Революция в использовании фотоэлементов произошла тогда, когда в недрах лаборатории компании «Bell Telephone» был создан первый элемент на кремнии. Компания нуждалась в источнике электроэнергии для телефонных станцией, и, можно сказать, была первой компанией, которая использовала альтернативный источник на солнечной энергии.

Кремний до сих пор остается основных материалом для производства фотоэлементов. Вообще кремний (Silicium, Silicon) - второй по распространенности элемент на Земле, запасы его огромны. Однако в промышленном его использовании есть одна большая проблема - его очистка. Процесс этот очень трудоемкий и затратный, поэтому чистый кремний стоит дорого. Сейчас ведется поиск аналогов, которые бы не уступали кремнию по КПД. Перспективными считаются соединения меди, индия, селена, галлия и кадмия, а также органические фотоэлементы.

Солнечные батареи (Сборки)


Однако разность потенциалов, создаваемая одним фотоэлементов, мала для промышленного применения. Чтобы иметь возможность использовать солнечные элементы для электропитания устройств, их соединяют вместе. Тем самым получаются солнечные батарей (солнечные сборки, солнечные модули). Кроме того, фотоэлементы покрывают различными защитными слоями из стекла, пластмассы, различных пленок. Это делают для того, чтобы защитить хрупкий элемент.

Основной рабочей характеристикой солнечной батареи является пиковая мощность, которую выражают в Ваттах (Вт, W). Эта характеристика показывает выходную мощность батареи в оптимальных условиях: солнечном излучении 1 кВт/м 2 , температуре окружающей среды 25 o C, солнечном спектре шириной 45 o (АМ1,5). В обычных условиях достичь таких показателей удается крайне редко, освещенность ниже, а модуль нагревается выше (до 60-70 градусов).

Соединяя фотоэлементы последовательно мы повышаем разность потенциалов, соединяя параллельно - ток. Таким образом комбинируя соединения можно добиться требуемых параметров по току и напряжению, а следовательно и по мощности. Кроме того, последовательно или параллельно можно соединять не только фотоэлементы в рамках одной солнечной батареи, но и солнечные батареи в целом.

Одним из источников энергии является , генерирующая альтернативную энергию Солнца. Она появилась сравнительно недавно, но уже успела обрести популярность в странах Евросоюза, за счет высокой эффективности и приемлемой стоимости.

Солнечная батарея является почти неисчерпаемым источником энергии, способным накапливать и преобразовывать световые лучи в энергию и электричество. В странах СНГ новый источник энергии постепенно только набирает популярность. (Кстати, статью о том, как выбрать солнечную батарею, Вы можете прочитать .)

Компоненты

Существует два вида их подключения :

  • последовательное;
  • параллельное.

Разница лишь в том, что в параллельном соединении происходит увеличение силы тока, а при последовательном увеличивается напряжение.

Если есть необходимость в максимальной работе сразу двух параметров, то используется параллельно-последовательное.

Но стоит учитывать, что высокие нагрузки могут способствовать тому, что некоторые контакты могут перегореть. Для предотвращения этого используют диоды.

Один диод способен защитить одну четвертую часть фотоэлемента. Если их нет в устройстве, то есть большая вероятность, что весь источник энергии прекратит своё функционирование после первого же дождя или урагана.

Важный момент: ни накопление, ни сила тока совершенно не соответствуют возможным параметрам современной бытовой техники, поэтому приходится перераспределять и накапливать электроэнергию.

Для этого рекомендуется дополнительно подключать минимум два . Один будет являться накопительным, а второй запасным или резервным.

Приведем пример работы дополнительных аккумуляторов. Когда на улице хорошая и солнечная погода, то заряд идет быстро и через малое количество времени появляется уже лишняя энергия.

Поэтому весь этот процесс контролирует специальный реостат, который способен в определенный момент перевести всю ненужную электроэнергию в дополнительные резервы.

Познакомиться с отзывами владельцев солнечных батарей можно в данной статье:

Принцип работы

В чем же заключается принцип работы альтернативного источника энергии?

Во-первых, фотоэлементы являются кремниевыми пластинами. В свою очередь, кремний по своему химическому составу имеет максимальную схожесть с чистым силицием. Именно этот нюанс дал возможность понизить стоимость солнечной батареи и запустить ее уже на конвейер.

Кремний в обязательном порядке кристаллизуют, так как сам по себе он является полупроводником. Монокристаллы изготавливаются намного проще, но при этом не имеют много граней, за счет чего электроны имеют возможность двигаться прямолинейно.

Почти 100% всей энергии, которую мы используем в повседневной жизни – это энергия солнца, так или иначе преобразованная. Уголь – это умершие растения, которые жили благодаря фотосинтезу, нефть – растения и животные, которые вымерли миллионы лет назад и росли за счет энергии солнца. Даже когда вы сжигаете дрова – вы даете выход солнечной энергии, которую в себя впитала древесина. По сути, любая тепловая электростанция преобразовывает аккумулированную в виде угля, нефти, газа и др. ископаемых солнечную энергию в электричество.

Солнечная батарея просто делает это напрямую, без участия «посредников». Электричество – наиболее удобная форма применения солнечной энергии. Весь быт человечества сейчас построен вокруг электричества, и цивилизацию без него очень сложно представить. Несмотря на то, что первые фотоэлементы появились более полувека назад, солнечная энергетика пока не нашла должного распространения. Почему? Об этом в конце статьи, а пока разберемся, как это все работает.

Все дело в кремнии

Солнечные батареи состоят из ячеек меньшего размера – фотоэлементов, которые сделаны из кремния.

Солнечная панель состоит из нескольких фотоэлементов.

Важно. Кремний – наиболее распространенный полупроводник на Земле (около 30% всей земной коры)

Кремний располагается между двумя токопроводящими слоями.

"Сэндвич" из кремния и токопроводящих слоев

Каждый атом кремния соединен с соседними четырьмя сильными связями, которые удерживают электроны на месте, поэтому так ток течь не может.

Структура атомов кремния

Для того, чтобы получить ток используют два различных слоя кремния:

Кремний Р и N типа

Там, где соединяются два типа кремния, электроны могут перемещаться через Р-N переход, оставляя положительный заряд на одной стороне и отрицательный на другой.

Чтобы это было легче представить, лучше думать о свете, как о потоке частиц (фотонов), которые ударяются о нашу ячейку настолько сильно, что выбивает электрон из его связи, оставляя дырку. Отрицательно заряженный электрон и место положительно заряженной дырки теперь могут свободно перемещаться, но т.к. мы имеем электрическое поле на Р-N переходе, они движутся только в одном направлении. Электрон – в сторону N-проводника, дырка стремится на Р - сторону пластины.

После "освобождения" электрон стремится к проводнику

Все электроны собираются металлическими проводниками вверху ячейки и уходят во внешнюю сеть, питая токоприемники, аккумуляторы для солнечных батарей или электрический стул для хомяка:) . После проведенной работы электроны возвращаются к обратной стороне пластины и занимают места в тех самых «дырках».

Работа фотоэлемента

Стандартная пластина, 150х150 мм номинально вырабатывает только 0,5 вольта, но если объединить их в одну большую панель, то можно получить бо́льшую мощность и вольтаж. Для зарядки мобильника нужно объединить 12 таких пластин. Для питания дома нужно затратить гораздо больше пластин и панелей.

Благодаря тому, что в фотоэлементах единственной подвижной частью являются электроны, солнечные панели не нуждаются в обслуживании и могут служить 20-25 лет не изнашиваясь и не ломаясь.

Почему человек не перешел на солнечную энергию полностью?

Можно много рассуждать о политике, бизнесе и прочей конспирологии, но в рамках этой статьи хотелось бы рассказать о других проблемах.

  1. Неравномерное распределение солнечной энергии по поверхности планеты. Одни области более солнечные, чем другие и это тоже непостоянною. Солнечной энергии гораздо меньше в пасмурные дни и совсем нет ночью. И чтобы полностью рассчитывать на солнечную энергию, необходимы эффективные способы получения электричества для всех областей.
  2. КПД. В лабораторных условиях удалось достичь результата в 46%. Но коммерческие системы не достигают даже 25% эффективности.
  3. Хранение. Самым слабым звеном в солнечной энергетике является отсутствие эффективного и дешевого способа сохранять полученную электроэнергию. Существующие аккумуляторные батареи тяжелы и значительно снижают эффективность и без того слабые показатели солнечной системы. В целом, хранить 10 тонн угля проще и удобнее, чем 46 мегаватт, выработанных этим же углем или солнцем.
  4. Инфраструктура. Для того, чтобы питать мегаполисы – площадей крыш этих городов будет недостаточно, чтобы удовлетворить все запросы, поэтому для внедрения солнечной энергетики нужно транспортировать энергию, а для этого необходимо строить новые энергетические объекты

Видео о том, как производят солнечные батареи.

В ролике подробно описывается процесс изготовления поликристаллических солнечных батарей, принцип их работы в системе солнечных электростанций, принцип работы контроллера заряда и инвертора.

При постоянно растущих ценах на электроэнергию поневоле начнешь задумываться об использовании природных источников для электроснабжения. Одна из таких возможностей — солнечные батареи для дома или дачи. При желании они могут обеспечить полностью все потребности даже большого дома.

Устройство системы электропитания от солнечных батарей

Преобразовывать энергию солнца в электричество – эта идея длительное время не давала спать ученым. С открытием свойств полупроводников это стало возможным. В солнечных батареях используются кремниевые кристаллы. При попадании на них солнечного света в них образуется направленное движение электронов, которое называется электрическим током. При соединении достаточного количества таких кристаллов получаем вполне приличные по величине токи: одна панель площадью чуть больше метра (1,3-1,4 м2 при достаточном уровне освещенности может выдать до 270 Вт (напряжение 24 В).

Так как освещенность меняется в зависимости от погоды, времени суток, напрямую подключать устройства к солнечным батареям не получается. Нужна целая система. Кроме солнечных панелей требуется:

  • Аккумулятор. На протяжении светового дня под воздействием солнечных лучей солнечные батареи вырабатывают электрический ток для дома, дачи. Он не всегда используется в полном объеме, его излишки накапливаются в аккумуляторе. Накопленная энергия расходуется ненастную погоду.
  • Контролер. Не обязательная часть, но желательная (при достаточном количестве средств). Отслеживает уровень заряда аккумулятора, не допуская его чрезмерного разряда или превышения уровня максимального заряда. Оба этих состояния губительны для аккумулятора, так что наличие контролера продлевает срок эксплуатации аккумулятора. Также контролер обеспечивает оптимальный режим работы солнечных панелей.
  • Преобразователь постоянного тока в переменный (инвертор). Не все устройства рассчитаны на постоянный ток. Многие работают от переменного напряжения в 220 вольт. Преобразователь дает возможность получить напряжение 220-230 В.

Солнечные батареи для дома — только часть системы

Установив солнечные батареи для дома или дачи, можно стать совершенно независимым от официального поставщика. Но для этого надо иметь большое количество батарей, некоторое количество аккумуляторов. Комплект, который вырабатывает 1,5 кВт а сутки стоит около 1000$. Этого достаточно для обеспечения потребностей дачи или части электрооборудования в доме. Комплект солнечных батарей для производства 4 кВт в сутки стоит порядка 2200$, на 9 кВт в сутки — 6200$. Так как солнечные батареи для дома — модульная система, можно купить установку, которая будет обеспечивать часть потребностей, постепенно увеличивая ее производительность.

Виды солнечных батарей

С ростом цен на энергоносители идея использования энергии солнца для получения электроэнергии становится все более популярной. Тем более, что с развитием технологий солнечные преобразователи становятся эффективнее и, одновременно, дешевле. Так что, при желании, можно свои нужды обеспечить установив солнечные батареи. Но они бывают разных типов. Давайте разбираться.

Сама солнечная батарея — некоторое количество фотоэлементов, которые расположены в общем корпусе, защищенные прозрачной лицевой панелью. Для бытового использования фотоэлементы производят на основе кремния, так как он относительно недорог, и элементы на его основе имеют неплохой КПД (порядка 20-24%). На основе кремниевых кристаллов изготавливают монокристаллические, поликристаллические и тонкопленочные (гибкие) фотоэлементы. Некоторое количество этих фотоэлементов электрически соединены между собой (последовательно и/или параллельно) и выведены на клеммы, расположенные на корпусе.

Фотоэлементы установлены в закрытом корпусе. Корпус солнечной батареи делают из анодированного алюминия. Он легкий, не подвержен коррозии. Лицевую панель делают из прочного стекла, которое должно выдерживать снего-ветровые нагрузки. К тому же оно должно обладать определенными оптическими свойствами — иметь максимальную прозрачность, чтобы пропускать как можно больше лучей. Вообще, из-за отражения теряется значительное количество энергии, так что требования к качеству стекла высокие и еще оно покрывается антибликовым составом.

Виды фотоэлементов для солнечных батарей

Солнечные батареи для дома делают на основе кремневых элементов трех типов;


Если у вас скатная крыша и фасад развернут на юг или восток, слишком сильно думать о занимаемой площади не имеет смысла. Вполне могут устроить поликристаллические модули. При равном количестве производимой энергии они стоят немного дешевле.

Как правильно выбрать систему солнечных батарей для дома

Есть распространенные заблуждения, которые заставляют вас тратить лишние деньги на приобретение чересчур дорогого оборудования. Ниже приведем рекомендации того, как правильно выстроить систему электропитания от солнечных батарей и не потратить лишних денег.

Что надо купить

Далеко не все компоненты солнечной электростанции жизненно необходимы для работы. Без некоторых частей вполне можно обойтись. Они служат для повышения надежности, но без них система работоспособна. Первое, что стоит запомнить — приобретайте солнечные батареи в конце зимы, начале весны. Во-первых, погода в это время отличная, много солнечных дней, снег отражает солнце, увеличивая общую освещенность. Во-вторых, в это время традиционно объявляют скидки. Далее советы такие:


Если воспользоваться только этими советами, и подключить только технику, которая работает от постоянного напряжения, система солнечных батарей для дома обойдется в гораздо более скромную сумму чем самый дешевый комплект. Но это еще не все. Можно еще часть оборудования оставить «на потом» или вообще обойтись без него.

Без чего можно обойтись

Стоимость комплекта солнечных батарей на 1 кВт в сутки — более тысячи долларов. Немалые вложения. Поневоле задумаешься, а стоит ли оно того и каков же будет срок окупаемости. При нынешних тарифах ждать пока отобьются свои деньги придется не один год. Но можно затраты уменьшить. Не за счет качества, но за счет незначительного снижения комфортности эксплуатации системы и за счет разумного подхода к подбору ее компонентов.


Итак, если бюджет ограничен, можно обойтись несколькими солнечными панелями и аккумуляторными батареями, емкость которых на 20-25% выше максимального заряда солнечных панелей. Для мониторинга состояния купите автомобильные часы, которые еще измеряют напряжение. Это избавит вас от необходимости несколько раз в день измерять заряд на АКБ. Вместо этого вам надо будет время от времени смотреть на показания часов. Для старта это все. В дальнейшем можно докупать солнечные батареи для дома, увеличивать количество АКБ. При желании, можно купить инвертор.

Определяемся с размерами и количеством фотоэлементов

В хороших солнечных батареях на 12 вольт должно быть 36 элементов, на 24 вольта — 72 фотоэлемента. Это количество оптимально. При меньшем числе фотоэлементов вы никогда не получите заявленный ток. И это — лучший из вариантов.

Не стоит покупать сдвоенные солнечные панели — по 72 и 144 элемента соответственно. Во-первых, они очень большие, что неудобно при перевозке. Во-вторых, при аномально низких температурах, которые у нас периодически случаются, они первыми выходят из строя. Дело в том, что ламинирующая пленка при морозах сильно уменьшается в размерах. На больших панелях из-за большого натяжения она отслаивается или даже рвется. Теряется прозрачность, катастрофически падает производительность. Панель идет в ремонт.

Второй фактор. На больших по размерам панелях должна быть больше толщина корпуса и стекла. Ведь увеличивается парусность и снеговые нагрузки. Но далеко не всегда это делают, так как значительно возрастает цена. Если вы видите сдвоенную панель, а цена на нее ниже, чем на две «обычных», лучше ищите что-то другое.

Еще раз: лучший выборсолнечная панель для дома на 12 вольт, состоящая из 36 фотоэлементов. Это оптимальный вариант, проверенный практикой.

Технические характеристики: на что обратить внимание

В сертифицированных солнечных батареях всегда указывается рабочий ток и напряжение, а также напряжение холостого хода и ток КЗ. При этом стоит учесть, что все параметры обычно указываются для температуры +25°C. В солнечный день на крыше батарея разогревается до температур, значительно превышающих эту цифру. Это объясняет наличие большего рабочего напряжения.

Также обратите внимание на напряжение холостого хода. В нормальных батареях оно порядка 22 В. И все бы ничего, но если проводить работы на оборудовании не отключив солнечные батареи, напряжение холостого ходы выведет из строя инвертор или другую подключенную технику, не рассчитанную на подобный вольтаж. Потому при любых работах — переключении проводов, подключении/отключении аккумуляторов и т.д. и т.п — первое что вы должны сделать — отключить солнечные батареи (снять клеммы). Перебрав схему, их подключаете последними. Такой порядок действий сохранит вам много нервов (и денег).

Корпус и стекло

Солнечные батареи для дома имеют алюминиевый корпус. Этот металл не корродирует, при достаточной прочности имеет небольшую массу. Нормальный корпус должен быть собран из профиля, в котором присутствуют, как минимум, два ребра жесткости. К тому же стекло должно быть вставлено в специальный паз, а не закреплено сверху. Все это — признаки нормального качества.

Еще при выборе солнечной батареи обратите внимание на стекло. В нормальных батареях оно не гладкое, а текстурированное. На ощупь — шершавое, если провести ногтями, слышен шорох. К тому же должно иметь качественное покрытие, которое сводит к минимуму блики. Это означает что в нем не должно ничего отражаться. Если хоть под каким-то углом видны отражения окружающих предметов, лучше найдите другую панель.

Выбор сечения кабеля и тонкости электрического подключения

Подключать солнечные батареи для дома необходимо медным одножильным кабелем. Сечение жилы кабеля зависит от расстояния между модулем и АКБ:

  • расстояние менее 10 метров:
    • 1,5 мм2 на одну солнечную батарею мощностью 100 Вт;
    • на две батареи — 2,5 мм2;
    • три батареи — 4,0 мм2;
  • расстояние больше 10 метров:
    • для подключения одной панели берем 2,5 мм2;
    • двух — 4,0 мм2;
    • трех — 6,0 мм2.

Можно брать сечение больше, но не меньше (будут большие потери, а оно нам не надо). При покупке проводов, обратите внимание на фактическое сечение, так как сегодня заявленные размеры очень часто не соответствуют действительным. Для проверки придется измерять диаметр и считать сечение (как это делать, прочесть можно ).

При сборе системы можно плюсы солнечных батарей провести используя многожильный кабель подходящего сечения, а для минуса использовать один толстый. Перед подключением к аккумуляторам все «плюсы» пропускаем через диоды или диодные сборки с общим катодом. Это предотвращает возможность замыкания аккумулятора (может вызвать возгорание) при замыкании или обрыве проводов между батареями и аккумулятором.

Диоды используют типа SBL2040CT, PBYR040CT. Если такие на нашли, можно снять со старых блоков питания персональных компьютеров. Там обычно стоят SBL3040 или подобные. Пропускать через диоды желательно. Не забудьте что они сильно греются, так что монтировать их надо на радиаторе (можно на едином).

Еще в системе необходим блок предохранителей. По одному на каждого потребителя. Всю нагрузку подключаем через этот блок. Во-первых, система так безопаснее. Во-вторых, при возникновении проблем, проще определить ее источник (по сгоревшему предохранителю).

Вы наверняка обращали внимание, что обычный калькулятор работает при минимальной освещённости любой лампой. Сравнивая размер солнечного элемента калькулятора и стандартного солнечного модуля, мощность излучения, можно представить производительность.

И это не учитывая, спектр солнечного света, который значительно шире видимого излучения лампы. Здесь и инфракрасный и ультрафиолетовый. Этот пример наглядно показывает как солнечная батарея, от рассвета до заката, молча делает своё дело. Хотя КПД, в пасмурную погоду, естественно ниже, чем в солнечную.

Еще, чем ниже температура окружающей среды, тем выше КПД солнечной батареи.

Работа солнечной батареи

В наше время солнечные батареи все больше используются не в космической промышленности, а в повседневной жизни для питания и зарядки портативных электронных устройств. А в некоторых странах энергия Солнца уже активно используется не только в больших промышленных солнечных электростанциях. но и в домашних мини электроустановках. Рассмотрим принцип работы солнечной батареи. Каким образом световая энергия Солнца преобразуется в электрическую? Многим может показаться, что принцип преобразования световой энергии в электрическую в солнечной батарее очень сложен для понимания человеку, не имеющему высшего образования в этой области. Однако это не так. Рассмотрим детально этот процесс на примере работы фотоэлектрического преобразователя, которые используются в солнечных батареях прямого преобразования.

Первые фотоэлектрические преобразователи были созданы инженерами компании Bell Labs в 1950 году специально для использования в космосе. Их основу составляют полупроводниковые элементы. Во время попадания на них солнечного света происходит процесс, основанный на фольтовольтаическом эффекте в неоднородных полупроводниках. преобразования энергии света в электричество. Это прямое преобразование одной энергии в другую, поскольку сам процесс одноступенчатый - не имеет промежуточных преобразований. Эффективность такого преобразования напрямую зависит от электрических и физических свойств полупроводников, а также их фотопроводимости - изменения электропроводимости вещества при его освещении.

Рассмотрим подробнее процессы, происходящие в p-n-переходе полупроводника при воздействии на него солнечного света. Напомню, что p-n-переход - это область полупроводника, где изменяется его тип проводимости с электроннойв дырочную. При попадании на переход солнечного света в n-области в результате перетекания зарядов образуется объемный положительный заряд, а в p-области - объемный отрицательный заряд. Таким образом, в области p-n-перехода возникает разность потенциалов. При объединении в определенном порядке нескольких фотоэлектрических преобразователей в модуль, а модулей в батарею, получаем солнечную батарею, способную генерировать электроэнергию.

Как работает солнечная батарея

Все живое на земле возникло, благодаря энергии солнца. Ежесекундно на поверхность планеты поступает огромное количество энергии в виде солнечного излучения. В то время, как мы сжигаем тысячи тонн угля и нефтепродуктов для обогрева жилища, страны, расположеные ближе к экватору изнывают от жары. Пустить энергию солнца на нужды человека - вот достойная для пытливых умов задача. В этой статье мы рассмотрим конструкцию прямого преобразователя солнечного света в электрическую энергию - солнечного элемента.

Тонкая пластина состоит из двух слоев кремния с различными физическими свойствами. Внутренний слой представляет собой чистый монокристаллический кремний, обладающий дырочной проводимостью. Снаружи он покрыт очень тонким слоем «загрязненного» кремния, например с примесью фосфора. На тыльную сторону пластины нанесен сплошной металлический контакт. У границы n-и p- слоёв в результате перетечки зарядов образуются обеднённые зоны с нескомпенсированным объёмным положительным зарядом в n-слое и объёмным отрицательным зарядом в p-слое. Эти зоны в совокупности и образуют p-n-переход.

Возникший на переходе потенциальный барьер препятствует прохождению основных носителей заряда, т.е. электронов со стороны p-слоя, но беспрепятственно пропускают неосновные носители в противоположных направлениях. Это свойство p-n-переходов и определяет возможность получения фото-ЭДС при облучении ФЭП солнечным светом. Когда СЭ освещается, поглощенные фотоны генерируют неравновесные электронно-дырочные пары. Электроны, генерируемые в p-слое вблизи p-n-перехода, подходят к p-n-переходу и существующим в нем электрическим полем выносятся в n-область.

Аналогично и избыточные дырки, созданные в n-слое, частично переносятся в p-слой. В результате n-слой приобретает дополнительный отрицательный заряд, а p-слой - положительный. Снижается первоначальная контактная разность потенциалов между p- и n-слоями полупроводника, и во внешней цепи появляется напряжение. Отрицательному полюсу источника тока соответствует n-слой, а p-слой - положительному.

Большинство современных солнечных элементов обладают одним p-n-переходом. В таком элементе свободные носители заряда создаются только теми фотонами, энергия которых больше или равна ширине запрещенной зоны. Другими словами, фотоэлектрический отклик однопереходного элемента ограничен частью солнечного спектра, энергия которого выше ширины запрещенной зоны, а фотоны меньшей энергии не используются. Преодолеть это ограничение позвляют многослойные структуры из двух и более СЭ с различной шириной запрещенной зоны. Такие элементы называются многопереходными, каскадными или тандемными. Поскольку они работают со значительно большей частью солнечного спектра, эффективность фотоэлектрического преобразования у них выше. В типичном многопереходном солнечном элементе одиночные фотоэлементы расположены друг за другом таким образом, что солнечный свет сначала попадает на элемент с наибольшей шириной запрещенной зоны, при этом поглощаются фотоны с наибольшей энергией.

Батареи работают не от солнечных лучей, а от солнечного света в принципе. Электромагнитное излучение достигает земли в любое время года. Просто в пасмурную погоду энергии вырабатывается меньше. Например, мы устанавливали автономные фонари на солнечных батареях. Конечно, бывают небольшие промежутки, когда батареи не успевают полностью заряжаться. Но в целом за зиму это не так уж и часто происходит.

Интересно, что даже если на солнечную панель попадает снег, она все равно продолжает преобразовывать солнечную энергию. А за счет того, что фотоэлементы нагреваются, снег сам оттаивает. Принцип такой же, как подогрев стекла у машины.

Идеальная зимняя погода для солнечной батареи морозный безоблачный день. Иногда в такие дни даже рекорды по генерации можно устраивать.

Зимой эффективность солнечной батареи падает. В Москве и Подмосковье в среднем в месяц она вырабатывает в 8 раз меньше электроэнергии. Скажем, если летом для работы холодильника, компьютера и верхнего освещения дома нужен 1 кВт энергии, то зимой для надежности лучше запастись 2 кВт.

При этом на Дальнем Востоке продолжительность солнечного сияния больше, эффективность снижается всего в полтора-два раза. Ну и, конечно, чем южнее, тем меньше разница между зимним и летним периодом.

Так же важен угол наклона модулей. Можно выставить универсальный угол, на целый год. А можно каждый раз менять, в зависимости от сезона. Делают это не владельцы дома, а специалисты, которые выезжают на место.

Принцип работы солнечной батареи и их виды

Энергия Солнца используется в промышленности и в повседневной жизни во многих уголках мира. Принцип работы солнечной батареи несложен, и это является одним из качеств данной технологии, которая привлекает большое количество людей. Кремниевый фотогальванический элемент помогает преобразовывать солнечный свет в электричество. Свободные электроны становятся источником электрического тока.

Разобравшись, как работает солнечная батарея, ее легко можно сконструировать самостоятельно и использовать для личных нужд. Такие батареи надежны, легки в использовании и долговечны. Преимуществом такого устройства является то, что оно может быть разного размера в зависимости от необходимого количества энергии.

Стоит выделить отдельные виды солнечных батарей . тонкопленочные, монокристаллические и поликристаллические панели. Самым популярным видом батарей являются монокристаллические. Благодаря фотоэлектрическому эффекту в силиконовых ячейках солнечная энергия преобразуется в электроэнергию. Такие батареи обычно достаточно компактны, поскольку оптимальным количеством ячеек в них считается тридцать шесть. Такие батареи идеально подойдут для установки на неровной поверхности.

Принцип работы солнечной батареи для дома типа не сильно отличается. Благодаря прочному стеклопластиковому корпусу такие батареи могут быть использованы для получения энергии на кораблях. С их помощью можно обеспечить работу оборудования и подзаряжать аккумулятор. Такая установка не будет эффективно работать в облачную погоду. Также существуют определенные ограничения температур, при которых можно получать наибольшее количество энергии.

Большим спросом пользуются тонкопленочные батареи . Принцип работы солнечной батареи этого типа позволяет устанавливать ее в любом месте. Для таких батарей не нужны прямые солнечные лучи. Также эти батареи будут работать при большом количестве пыли. Недостатком таких солнечных батарей являются крупные габариты, из-за чего возникает необходимость в выделении большой площади под такие установки.

Источники: super-alternatiwa.narod.ru, scsiexplorer.com.ua, howitworks.iknowit.ru, recyclemag.ru, energorus.com

Линии Наска

Нераскрытые Тайны

Тайроны

Исаакиевский собор – история сбывшихся пророчеств

Булаван – остров-убийца

Материалы будущего

Впервые графен получили русские ученые Андрей Гейм и Константин Новоселов в 2004г. в Манчестерском университете в Англии. В 2010 ...

Декор собственными силами

Мы все мастера-дизайнеры понемногу, по чуть-чуть, в меру своей фантазии и различных прикладных умений. Кто-то предпочитает обои бумажные с рисунком, ...

Тайны Древнего Египта: электричество

Каким образом освещались коридоры и склепы в пирамидах, где стены исписаны письменами? Это вопрос, как и многие другие, - ...

Как выбрать кухонный комбайн

Кухонный комбайн спасение для современных хозяек от многочасового простаивания на кухне, с ножом в руках и нарезанием салатов к праздничному...

Автомобиль на сжатом воздухе MiniC.A.T

Разработка автомобиля, который смог бы стать реальной альтернативой современному автомобилю, ведется уже давно. Однако до настоящего времени кардинального изменения на...

Пизанская башня

Пизанская Башня является одним из самых узнаваемых символов Италии. По своей узнаваемости это строение может поспорить с Римским Колизеем или...

Бельгийская провинция Антверпен

Город Лир в Бельгии был основан св. Гуммаром в VIII в. на месте слияния двух рек - Большой Нете и...

В первую очередь, жемчуг является невероятно красивым камнем, который был...

Хвост у людей

Забавно, но хвост у человека есть. До определенного периода. Известно, ...

Толщина льда в Антарктиде

Несмотря на сокращение площади материкового льда Антарктиды, его толщина увеличивается.Последняя...