Билайн

Какую выбрать схему подключения солнечных батарей загородного дома. Как правильно подключать солнечные панели разной мощности (pv модули) - бесперебойное питание - каталог статей - вега - профессиональное оборудование

Автономные системы электроснабжения загородных объектов позволяют жить в комфорте даже вдалеке от централизованных коммуникаций. Нередко наряду с традиционными схемами используют альтернативные, основанные на использовании энергии солнца.

Чтобы гелиосистема функционировала правильно, необходима грамотно составленная схема подключения солнечных батарей. Потребуется комплект качественного оборудования, способный справляться с возложенными обязанностями.

Мы расскажем, как грамотно спланировать размещение компонентов мини-электростанции. Вы узнаете, как выбрать технические устройства для сборки системы и как их правильно подключить. С учетом наших советов вы сможете соорудить эффективно действующую установку.

Рассмотрим, как устроена и работает гелиосистема для загородного дома. Главное ее назначение – преобразовать энергию солнца в электричество 220 В, которое является основным источником питания для домашних электроприборов.

Основные части, из которых состоит СЭС:

  1. Батареи (панели), преобразующие солнечное излучение в ток постоянного напряжения.
  2. Контроллер, регулирующий заряд АКБ.
  3. Блок аккумуляторных батарей.
  4. Инвертор, преобразующий напряжение АКБ в 220 В.

Конструкция батареи продумана таким образом, что позволяет оборудованию функционировать в различных погодных условиях, при температуре от -35ºС до +80ºС.

Выходит, что правильно установленные будут работать с одинаковой производительностью и зимой, и летом, но при одном условии – в ясную погоду, когда солнце отдает максимальное количество тепла. В пасмурную эффективность работы резко снижается.

Эффективность СЭС в средних широтах велика, но не настолько, чтобы полностью обеспечивать электричеством большие дома. Чаще гелиосистема рассматривается как дополнительный или резервный источник электроэнергии

Вес одной батареи на 300 Вт равен 20 кг. Чаще всего панели монтируют на крышу, фасад или специальные стойки, установленные рядом с домом. Необходимые условия: разворот плоскости в сторону солнца и оптимальный наклон (в среднем 45° к поверхности земли), обеспечивающий перпендикулярное падение солнечных лучей.

При возможности устанавливают трекер, отслеживающий движение солнца и регулирующий положение панелей.

Верхняя плоскость батарей защищена закаленным противоударным стеклом, которое легко выдерживает удары града или тяжелые снежные наносы. Однако необходимо следить за целостностью покрытия, иначе поврежденные кремниевые пластины (фотоэлементы) перестанут работать

Контроллер выполняет насколько функций. Кроме основной – автоматической регулировки заряда АКБ, регулирует подачу энергии от солнечных батарей, предохраняя тем самым аккумулятор от полной разрядки.

При полном заряде контроллер автоматически отключает АКБ от системы. Современные устройства оборудованы панелью управления с дисплеем, показывающим напряжение батарей.

Для самодельных гелиосистем лучшим выбором являются гелевые аккумуляторы, отличающиеся сроком бесперебойного функционирования 10-12 лет. После 10-летней работы их емкость уменьшается примерно на 15-25 %. Это необслуживаемые и абсолютно безопасные устройства, не выделяющие вредных веществ.

Зимой или в пасмурную погоду панели также продолжают работать (если их регулярно очищать от снега), но выработка энергии снижается в 5-10 раз

Стоит знать, что бытовые электростанции способны обслуживать постоянно работающий холодильник, периодически запускаемый погружной насос, телевизор, систему освещения. Чтобы обеспечить энергией функционирование котла или даже микроволновки, потребуется более мощное и очень дорогое оборудование.

Простейшая схема солнечной электростанции, включающая главные составные элементы. Каждый из них выполняет свою функцию, без которой работа СЭС невозможна

Существуют и другие, более сложные , однако данное решение является универсальным и наиболее востребованным в быту.

Шаги подключения батарей к оборудованию СЭС

Подключение происходит поэтапно, обычно в следующем порядке: сначала соединяют контроллер с аккумулятором, затем контроллер с солнечными панелями, затем аккумулятор с инвертором, и уже в последнюю очередь делают разводку по потребителям.

Этап #1: подключение к аккумулятору

Аккумуляторы занимают в сети четко определенное место. Они подключены к солнечным панелям не напрямую, а через контроллер, который регулирует их загрузку/разгрузку. С другой стороны аккумуляторный блок подсоединяют к инвертору, преобразующему ток.

Таким образом, схема подключения к аккумулятору выглядит так:

  • производим соединение аккумулятор/контроллер (затем контроллер/солнечные батареи);
  • соединяем аккумулятор и инвертор.

Возможны и другие варианты подключения, но данный является оптимальным, так как сохраняет незатраченную энергию, а при необходимости отдает ее потребителям.

Существует два варианта приобретения аккумуляторов: в составе полностью готовой к установке солнечной электростанции или отдельно, по заданным параметрам. Недорогой китайский комплект стоит не более 2000 рублей

Если одного аккумулятора недостаточно, приобретают несколько батарей с одинаковыми характеристиками. Их устанавливают в одном месте и подключают последовательно.

Для удобства использования и обслуживания блоки устанавливают на металлическом стеллаже с полимерным покрытием.

Рассмотрим, как аккумулятор подключается к контроллеру и инвертору.

Галерея изображений

Следующий шаг – подключение контроллера к солнечным панелям, а аккумуляторного блока – к инвертору.

Этап #2: подключение к контроллеру

Рассмотрим вариант, который часто используют на практике владельцы загородных домов. Они заказывают недорогое оборудование производства КНР на одной из интернет-площадок.

Бюджетный контроллер с минимальным количеством настроек, оснащенный тремя парами клемм, способный обслужить блок солнечных батарей мощностью 150 Вт. Стоимость – 1300 рублей

Подключение происходит в следующем порядке:

  • Сначала к контроллеру подключают блок аккумуляторных батарей. Это производится намеренно, чтобы проверить, как прибор выявит номинальное напряжение сети (стандартные значения – 12 В, 24 В). При соединении с АКБ используют первую пару клемм.
  • Затем присоединяют непосредственно солнечные панели , используя прилагающиеся к ним провода, а у контроллера – вторую пару клемм.
  • В последнюю очередь устанавливают оборудование для ночного освещени я – именно для этого и предназначена третья пара клемм. Кроме низковольтного освещения, которое действует исключительно после наступления темноты и запитывается от АКБ, другое оборудование использовать нельзя.

При любом виде подключения необходимо следить за полярностью.

Несоблюдение полярности приводит к мгновенной поломке контроллера, а также выходу из строя деталей солнечных панелей.

Схема подключения контроллера с тремя парами клемм. Ночное освещение (12 В) – необязательная функция, поэтому некоторые ее просто не используют. Включение лампочек можно настроить по времени: для работы в вечерние или утренние часы (+)

Контроллер и АКБ постоянно взаимодействуют. Например, во время пиковых нагрузок АКБ представляет собой буфер, осуществляющий защиту контроллера от выхода из строя.

Эти два прибора, как и остальные элементы системы, нельзя рассматривать по отдельности. При сборке солнечной электростанции следует иметь в виду каждое устройство, даже если конкретное подключение его не касается.

Пошаговая инструкция по подключению солнечных панелей к контроллеру

Галерея изображений

После подключения контроллера к аккумулятору и панелям присоединяем инвертор и, при необходимости, низковольтные осветительные приборы.

Этап #3: подключение к инвертору

Инвертор необходимо включать в систему, если приборы в доме работают от 220 В. Но бывают исключения, когда солнечные батареи устанавливают для системы 12 В, в этом случае инвертор не нужен.

Место установки инвертора в системе солнечной электростанции – между аккумуляторным блоком и потребителями энергии, то есть домашними бытовыми устройствами, приборами освещения и др. (+)

Приобретается прибор так же, как и остальные части гелиосистемы: в составе комплекта СЭС или отдельно.

Порядок действий при подключении инвертора к аккумулятору:

Галерея изображений

Если вы ранее не занимались установкой солнечных электростанций, рекомендуем приобретать не отдельные приборы, а систему в комплекте.

Преимущество готовой для монтажа системы – в соответствии параметров оборудования (правильно подобранные по мощности аккумуляторы, необходимое количество солнечных панелей, набор проводов для быстрого подключения).

Логично, что совместимые по емкости, напряжению и мощности приборы будут намного эффективнее преобразовывать солнечную энергию и обеспечивать дом электричеством. Фактически бесплатную «зеленую энергию» можно использовать с , энергоснабжения бытовых устройств.

Выводы и полезное видео по теме

Владельцы загородного жилья уже давно оценили достоинства альтернативной энергии и активно используют СЭС в качестве постоянного или резервного источника. Полезные рекомендации от пользователей солнечных электростанций помогут вам с монтажом собственной системы.

Видео #1. Пошаговый инструктаж по сборке и подключению:

Видео #2. Разбор нередко встречающихся ошибок при выборе и установке оборудования:

Видео #3. Обзор одного из вариантов домашней установки:

Использование альтернативной энергии для нужд человечества – это действительно большой технологический скачок. Сегодня каждый домовладелец может самостоятельно собрать и подключить солнечную электростанцию, питающую дом электричеством. С учетом окупаемости и экологической чистоты это практичное и результативное решение.

Хотите рассказать о том, как собрали небольшую солнечную электростанцию собственными руками? Есть интересные факты и полезные сведения по теме статьи? Пишите, пожалуйста, комментарии в расположенном ниже блоке, делитесь впечатлениями, мнением и тематическими фотоснимками.

10 марта 2015 в 19:45

Мой личный опыт использования солнечных панелей без подключения к РЭС

  • Энергия и элементы питания

В статье описывается самый обычный эксперимент с получением электрической энергии от солнца.

Предыстория

Захотел я переехать из города на природу. Требования были следующие:
  • Недалеко от Киева, рассматривались участки до 30км
  • Недалеко от родителей моих и супруги, которые остаются в Киеве
  • Поменьше людей, побольше природы.
В результате было выбрано с. Зазимье, Броварского района. 10 километров до границы города. Удобно ехать домой на такси, если с машиной что-то не так. Был выбран участок, куплен. А потом местная энергокомпания «развела руками». Я был в шоке. Я рассчитывал решить вопрос максимум за 5K$, а получилось «как всегда». Таким образом я пришел к альтернативным источникам получения электроэнергии.

Первый опыт был интересным. Фундамент мы заливали с помощью генератора FIRMAN на 950Вт, небольшой бетономешалки (40л) и по выходным. Все это помещалось в Славуту. Был построен небольшой дом 18м2+чердак, на простом каркасе, в котором мы сейчас и обитаем время от времени. В основном в теплое время, конечно. Рядом в селе снимаем кусок дома на зимнее время. Речь и пойдет об электрификации этого дома.

Начало

Были куплены две солнечные панели китайского производства по 180Вт каждая. Был куплен контроллер ШИМ EPSOLAR на 20А. Два свинцово-кислотных аккумулятора по 100Ач достались по очень льготной цене и инвертор FORT FX55. Позднее мне еще подарили автомобильный преобразователь 12-220 на 300Вт. А до этого я еще купил на 150Вт без вентиляторный автомобильный преобразователь.

С оборудованием разобрались.

Вот снимок характеристик одной панели:

Вот то, что панели выдают на ХХ:


Фотография сразу после установки на крышу:

Быт, потребление

Живу я, сами понимаете, ИТ-жизнью. Убежденный фрилансер, периодически пытаюсь создать что-то большее чам самостоятельный фриланс. Кому интересно, можете зайти ко мне в гости

Все вышеописанное питает: Macbook Pro 2010, телефоны, книжки, планшеты, 3G-роутер, принтер HP LaserJet 1020. Зарядка шуруповерта, насосная станция для воды 1100Вт, пару прожекторов на улицу с датчиками движения и освещенности. Освещение в доме светодиодное 12В.

Есть так же генератор 2,5КВт Кентавр. 4-х тактный. Масло отдельно, а 95-й бензин отдельно. Расход 0,5л в час. Очень экономно получется. На нем сейчас работает бетономешалка, когда она требуется.

На кухне в мелком доме сейчас стоит газовый баллон на 4,8л, без редуктора. Типа «туристический», но работает постоянно. Хватает на две недели при готовке три раза в день. Мимо АГЗС проезжаю регулярно, так что с заправкой проблем нет.

Вот как мое хозяйство выглядело этой зимой:

Большой дом и планы на него

Как я уже писал, изначально планировалась сеть для него, поэтому куплен инвертор FORT FX55 (3500Вт / 5500Вт пусковой). Крыша спроектирована под 20 солнечных панелей 180Вт, что бы они «стали на угол 50 градусов». Широта у меня такая. Где-то вычитал, что на нашей широте и ставить надо под углом 50 градусов - это самый оптимальный угол. Аккумуляторы куплю гелевые, поставлю отдельный новый контроллер.

Будет печка, с которой я на освещение буду снимать зимой электричество (см. ru.wikipedia.org/wiki/Элемент_Пельтье). Так же с печки будет «снято»: горячая вода, водяное отопление (пол + батареи). Печка будет «двухколпаковая». Для эстетики добавлю камин.

На кухне газовая плита и газовая же (ох, и трудно было найти) духовка. Встроенная в мебель.
Вопросы? Комментарии?

Оговорюсь сразу, что несмотря на 4 балла по ТОЭ, основы электротехники я совсем не помню. Ну разве что закон Ома, который является частным случаем Второго правила Кирхгофа. Все делалось по логике и вычитанному из интернета.

Альтернативная энергетика становится все доступнее. Эта статья даст вам полное представление о солнечной энергетике локальных масштабов, видах фотоэлементов и панелей, принципах построения солнечных ферм и экономической обоснованности.

Особенности солнечной энергетики в средних широтах

Для жителей средних широт альтернативная энергетика весьма привлекательна. Даже в северных широтах среднегодовая суточная доза излучения составляет 2,3-2,6 кВт·ч/м 2 . Чем ближе к югу — тем выше этот показатель. В Якутске, например, интенсивность солнечного излучения составляет 2,96, а в Хабаровске — 3,69 кВт·ч/м 2 . Показатели в декабре составляют от 7% до 20% от среднегодового значения, а в июне и июле возрастают вдвое.

Вот пример расчета эффективности солнечных панелей для Архангельска — региона с одним из самых низких показателей интенсивности солнечного излучения:

  • Q — среднегодовое количество солнечной радиации в регионе (2,29 кВт·ч/м 2);
  • К откл — коэффициент отклонения поверхности коллектора от южного направления (среднее значение: 1,05);
  • P ном — номинальная мощность солнечной панели;
  • К пот — коэффициент потерь в электроустановках (0,85-0,98);
  • Q исп — интенсивность излучения, при которой панель испытывалась (обычно 1000 кВт·ч/м 2).

Последние три параметра указываются в паспорте панелей. Таким образом, если в условиях Архангельска работают панели KVAZAR с номинальной мощностью 0,245 кВт, а потери в электроустановке не превышают 7%, то один блок фотоэлементов обеспечит генерацию в размере около 550 Вт·ч. Соответственно, для объекта с номинальным потреблением 10 кВт·ч понадобится около 20 панелей.

Экономическая обоснованность

Сроки окупаемости солнечных панелей посчитать несложно. Умножьте суточное количество производимой энергии в сутки на количество суток в году и на срок эксплуатации панелей без снижения мощности — 30 лет. Рассмотренная выше электроустановка способна генерировать в среднем от 52 до 100 кВт·ч в сутки в зависимости от продолжительности светового дня. Среднее значение составляет около 64 кВт·ч. Таким образом, за 30 лет электростанция в теории должна выработать 700 тыс. кВт·ч. При одноставочном тарифе в 3,87 руб. и стоимости одной панели около 15 000 руб, затраты окупятся за 4-5 лет. Но реальность более прозаична.

Дело в том, что декабрьские значения солнечной радиации меньше среднегодовых примерно на порядок. Поэтому для полностью автономной работы электростанции зимой требуется в 7-8 раз больше панелей, чем летом. Это существенно увеличивает вложения, но уменьшает срок окупаемости. Перспектива введения «зеленого тарифа» выглядит вполне ободряюще, но даже на сегодняшний день можно заключить договор на поставку электроэнергии в сеть по оптовой цене, которая втрое ниже розничного тарифа. И даже этого достаточно, чтобы выгодно продавать 7-8 кратный излишек выработанной электроэнергии в летний период.

Основные типы солнечных панелей

Существует два основных типа солнечных панелей.

Твердые кремниевые фотоэлементы считаются элементами первого поколения и наиболее распространены: около 3/4 рынка. Их существует две разновидности:

  • монокристаллические (черного цвета) имеют высокий КПД (0,2-0,24) и малую цену;
  • поликристаллические (темно-синего цвета) дешевле в производстве, но менее эффективны (0,12-0,18), хотя при рассеянном свете их КПД снижается меньше.

Мягкие фотоэлементы называют пленочными и изготавливают либо из кремниевого напыления, либо путем многослойной композиции. Кремниевые элементы дешевле в производстве, но их КПД в 2-3 раза ниже кристаллических. Однако при рассеянном свете (сумерки, пасмурность) они эффективнее кристаллических.

Некоторые виды композитных пленок имеют КПД около 0,2 и стоят гораздо больше твердых элементов. Их применение в солнечных электростанциях весьма сомнительно: пленочные панели в большей степени подвержены деградации со временем. Основная область их применения — мобильные энергоустановки с низким потреблением энергии.

Гибридные панели включают помимо блока фотоэлементов также коллектор — систему капиллярных трубок для нагрева воды. Преимущество их не только в экономии площади и возможности горячего водоснабжения. За счет водяного охлаждения фотоэлементы меньше теряют в производительности при нагреве.

Таблица. Обзор производителей

Модель SSI Solar LS-235 SOLBAT MCK-150 Canadian Solar CS5A-210M Chinaland CHN300-72P
Страна Швейцария Россия Канада Китай
Тип Поликристалл Монокристалл Монокристалл Поликристалл
Мощность при 1000 кВт·ч/м 2 , Вт 235 150 210 300
Число элементов 60 72 72 72
Напряжение: холостого хода/при нагрузке, В 36,9/29,8 18/12 45,5/37,9 36,7/43,6
Ток: при нагрузке/короткого замыкания, А 7,88/8,4 8,33/8,58 5,54/5,92 8,17/8,71
Вес, кг 19 12 15,3 24
Размеры, мм 1650х1010х42 667х1467х38 1595х801х40 1950х990х45
Цена, руб. 13 900 10 000 14 500 18 150

Оборудование гелиоэнергетического комплекса

Батареи генерируют при работе постоянный ток величиной до 40 В. Чтобы использовать его в бытовых целях, требуется ряд преобразований. За это отвечает следующее оборудование:

  1. Блок аккумуляторных батарей. Позволяет пользоваться выработанной энергией ночью и в часы малой интенсивности. Используются гелиевые аккумуляторы номинальным напряжением 12, 24 или 48 В.
  2. Контроллеры заряда поддерживают оптимальный цикл работы аккумуляторов и переводят требуемую мощность на питание потребителей. Необходимое оборудование подбирается под параметры батарей и аккумуляторов.
  3. Инвертор напряжения трансформирует постоянный ток в переменный и имеет ряд дополнительных функций. Во-первых, инвертор устанавливает приоритет источника напряжения, а при недостатке мощности «подмешивает» питание из другого. Гибридные инверторы позволяют также отдавать излишек вырабатываемой энергии в городскую сеть.

1 — солнечные батареи 12 В; 2 — солнечные батареи 24 В; 3 — контроллер заряда; 4 — АКБ 12 В; 5 — освещение 12 В; 6 — инвертор; 7 — автоматика «умного дома»; 8 — блок АКБ 24 В; 9 — аварийный генератор; 10 — основные потребители 220 В

Применение в домашнем хозяйстве

Солнечные панели могут использоваться в абсолютно любых целях: от компенсации получаемой энергии и питания отдельных линий до полной автономизации энергосистемы , включая отопление и горячее водоснабжение. В последнем случае важную роль играет масштабное применение энергосберегающих технологий — рекуператоров и тепловых насосов.

При смешанном использовании гелиоэнергетики используют инверторы. При этом питание может направляться либо на работу отдельных линий или систем, либо частично компенсировать использование городского электричества. Классический пример эффективной энергосистемы — тепловой насос, питаемый небольшой солнечной электростанцией с блоком аккумуляторов.

1 — городская сеть 220 В; 2 — солнечные батареи 12 В; 3 — освещение 12 В; 4 — инвертор; 5 — контроллер заряда; 6 — основные потребители 220 В; 7 — АКБ

Традиционно панели устанавливают на крышах зданий, а в некоторых архитектурных решениях они полностью заменяют кровельное покрытие. При этом панели необходимо ориентировать на южную сторону таким образом, чтобы падение лучей на плоскость было перпендикулярным.

Подключение солнечных панелей разной мощности - как это сделать правильно? - Кстати, внизу вас ждет подарок!
Очень часто при расширении системы с солнечными батареями возникает вопрос: как подключить солнечные панели разной мощности и разного напряжения - последовательно или параллельно?
Рассмотрим решение этой задачи на конкретном примере.
Допустим, у вас уже есть система с ,

к которому подключена единственная (рабочее напряжение 20В и максимальный ток 5А). И вы приобрели еще одну (рабочее напряжение 24В и выходной ток 5,4А).
Необходимо помнить, что последовательно соединять панели можно до тех пор, пока суммарное напряжение холостого хода панелей не достигнет максимального допустимого входного напряжения контроллера (для данного примера - это 75В, на что указывает первая цифра в названии контроллера). При этом надо ОБЯЗАТЕЛЬНО учитывать, что напряжение ХХ выбирается для самых низких температур вашего региона. Эта информация всегда представлена в справочной документации на солнечную панель. Напоминаем, что повреждение MPPT-контроллера высоким напряжением не является гарантийным случаем. Будьте внимательны при подборе оборудования.

Видео обзор небольшого и недорогого инвертора для дома.
Газовый котел, освещение и телевизор работает всегда! Гарантия на оборудование 5 лет.
Бесплатная установка и доставка. Заполните анкету и мы вам перезвоним.

Забегая вперед, скажем, что возможны оба способа подключения панелей. Но для каждого из них существуют свои достоинства и недостатки. Рассмотрим иллюстрацию, поясняющую наш пример.


На рисунке представлены оба варианта подключения панелей.
Как видно из приведенных внизу рисунка расчетов, в нашем случае большую мощность мы получим при последовательном соединении солнечных батарей, так как в этом случае напряжение складывается, а максимальный ток системы ограничен модулем с меньшим током. В этом случае эти значения составляют, соответственно, 44В и 5А, и при этом получается выходная мощность порядка 220 Вт.
При параллельном подключении расчет ведется по-другому. Здесь уже суммируются токи 2-х панелей, а максимальное выходное напряжение будет ограничено панелью с меньшим напряжением на выходе. В нашем случае это будет солнечная батарея с выходным напряжением 20В, а суммарный ток массива составит 10,4А. Таким образом, максимальная мощность системы получится равной 208 Вт, т.е. немного меньше, чем в случае с последовательным подключением солнечных батарей. Но у такого варианта подключения панелей есть и свое достоинство - если при параллельным соединении суммарный выходной ток панелей превысит максимальный входной ток MPPT контроллера, это не приведет к выходу из строя последнего. Контроллер просто ограничит зарядный ток до своего максимального допустимого уровня. В контроллере из нашего примера он равен 15А (на это указывает вторая цифра в названии).
Теперь, мы надеемся, вы сможете правильно оценить варианты наращивания вашей системы.

И еще одно необходимое напоминание, относящееся к правилам безопасности: НИКОГДА НЕ ПРОВОДИТЕ НИКАКИХ ПОДКЛЮЧЕНИЙ К РАБОТАЮЩЕЙ СИСТЕМЕ!!! Обязательно отсоедините АКБ и сами панели от контроллера и, если необходимо, от нагрузки перед подключением дополнительных панелей. Помните, что при последовательном соединении солнечных батарей в системе появляется опасное для жизни высокое напряжение!!!

Принципиальные схемы солнечных батарей и вариантов их присоединения к управляющим и преобразующим устройствам не является большой сложностью. Практическая сложность общей схемы, с конкретными значениями характеристик всех элементов, заключается в правильном расчете нагрузки, настройке контроллера зарядки и контроллера отбора энергии от других источников.

На примере рисунка рассмотрим некоторые нюансы, связанные с разнонаправленностью панелей, что приводит к различной освещенности панелей. Кроме этого, рассмотрим типы контроллеров зарядки АБК.

Размещение нескольких панелей в одной плоскости не вызывает особых проблем в схемотехнике и практическом подключении. Панели, размещенные в разных плоскостях, пусть близких, работают по-другому. Более освещенная панель (более близкая к точке максимальной мощности) генерирует электричество, часть которого идет на нагрев другой панели, т.к. ток течет по пути наименьшего сопротивления.

И есть два способа избежать этих потерь:

  • Установить на каждую панель свой контроллер. Имеет смысл, если это мощные панели (более 1 кВт) или панели разнесены на большое расстояние.
  • Установить отсекающие (запирающие) диоды. Некоторые производители комплектуют диодами свои панели и предусматривают их место в распределительной коробке. Кстати, внутри панели (схема панели) предусматривается наличие диодов между модулями (пластинами), что позволяет получать максимальную мощность и не "греть" пластину с более низкими показателями.

Другая мелочь, на которую мало обращают внимание - это падение напряжения в проводах низковольтной части системы и потери в соединениях. Например, при длине кабеля 1 м сечением 4 кв. мм при прохождении тока в 80 А с напряжением 12 В падение напряжения составит 0,383 В (3,19 %) или 30,6 Вт. В "скрутках" падение составляет 0,1-0,3 В.

Красным цветом указано несоответствие передаваемой мощности сечению провода, при котором происходит сильный пожароопасный нагрев.

Контроллер зарядки АКБ

Контроллер зарядки батареи предназначен для перераспределения генерируемой электроэнергии. Приоритетом является поддержание АБК в заряженном состоянии, а при полной зарядке - направление энергии на инвертор.

Различают два способа организации контроля зарядки:

  • PWM (ШИМ) контроллер - устройство, генерирующее собственные измерительные импульсы с частотой (около 1 Гц) для контроля состояния батареи в широком диапазоне характеристик (широко-импульсный). Схема с простой релейной логикой, т.е. выше напряжения на АКБ (кислотные АКБ - 16,2 В) - выключил зарядку, ниже - снова включил.
  • MPPT-контроллер с процессором постоянно отслеживает положение точки максимальной мощности (ТММ) солнечной батареи по току и напряжению. Другое плечо контроллера отслеживает состояние АКБ. Процессор сопоставляет данные и определяет значения тока и напряжения, направляемые на АКБ в зависимости от уровня зарядки.

Оба типа контроллеров обеспечивают комфортный режим работы батареи и не имеют решающих преимуществ друг перед другом. Преимуществом МРРТ можно назвать наглядность процесса его работы и возможность накопления информации.

Схема солнечной батареи с дополнительными источниками тока

Надежность электроснабжения с применением солнечной батареи значительно повышается, когда она работает в комплексе с другими источниками или, как дополнительный источник к системе централизованного энергоснабжения. В любом случае общая схема усложняется появлением дополнительных устройств контроля и управления.

Солнечная батарея и ветрогенератор

Схемы, в которых соседствуют различные источники энергии, должны строиться на общей характеристике - одинаковое напряжение источников, т.к. иначе потребуются разные контроллеры зарядки и, возможно, инверторы (если разброс по мощности источников большой), а схема блока АКБ позволяет подстраиваться под напряжение источников.

Подключение источника с генератором переменного тока с параметрами сети несколько изменяет схему подключения. На рисунке представлен самый общий вариант без блока подзарядки АКБ (контроллер и трансформатор с выпрямителем, которые отбирают энергию от внешнего источника переменного тока).

Схема подключения усложняется в случае, если автономная система подключена к централизованной сети. В России не отрегулированы ситуации, когда частный потребитель может отдавать излишки энергии в сеть. Кроме этого, переключение не бывает "гладким", т.е. происходит перепад напряжения длительностью 0,3-1 секунды в зависимости от сложности переключателя.

Сложность схемы подключения возрастает с подключением других источников. Вот некоторые вопросы, которые приходится рассматривать при сложной комплектации:

  • Согласование характеристик источников, устройств управления и преобразования энергии,
  • Надежность системы, в сочетании с проблемами утилизации избыточной энергии.

В целом ряде ситуаций могут оказать помощь наши специалисты. Для этого можно использовать сервисы сайта: онлайн-консультант и форму обратной связи.