Мегафон

Переменный ток и ёмкостное сопротивление конденсатора. Формула ёмкостного сопротивления для цепи переменного тока

Электрический ток в проводниках непрерывно связан с магнитным и электрическими полями. Элементы, характеризующие преобразование электромагнитной энергии в тепло, называются активными сопротивлениями (обозначаются R). Типичными представителями активных сопротивлений являются резисторы, лампы накаливания, электрические печи и т.д.

Индуктивное сопротивление. Формула индуктивного сопротивления.

Элементы, связанные с наличием только магнитного поля, называются индуктивностями. Индуктивностью обладают катушки , обмотки и . Формула индуктивного сопротивления:

где L — индуктивность.

Емкостное сопротивление. Формула емкостного сопротивления.

Элементы, связанные с наличием электрического поля, называются емкостями. Емкостью обладают конденсаторы, длинные линии электропередачи и т.д. Формула емкостного сопротивления:

где С — емкость.

Суммарное сопротивление. Формулы суммарного сопротивления.

Реальные потребители электрической энергии могут иметь и комплексное значение сопротивлений. При наличии активного R и индуктивного L сопротивлений значение суммарного сопротивления Z подсчитывается по формуле:

Аналогично ведется подсчет суммарного сопротивления Z для цепи активного R и емкостного C сопротивлений:

Потребители с активным R, индуктивным L и емкостным C сопротивлениями имеют суммарное сопротивление:

admin

ОПРЕДЕЛЕНИЕ

Конденсатор , в простейшем случае состоит из двух металлических проводников (обкладок), которые разделяет слой диэлектрика. Каждая из обкладок конденсатора имеет свой вывод и может быть подключена к электрической цепи.

Конденсатор характеризуют при помощи ряда параметров (емкость, рабочее напряжение и т. д), одной из таких характеристик является сопротивление. Конденсатор практически не пропускает постоянный электрический ток. То есть сопротивление конденсатора является бесконечно большим для постоянного тока, но это идеальный случай. Через реальный диэлектрик очень малый ток протекать может. Этот ток называют током утечки. Ток утечки является показателем качества диэлектрика, который применяется при изготовлении конденсатора. У современных конденсаторов ток утечки составляет некоторые доли микроампера. Сопротивление конденсатора в таком случае можно вычислить, используя закон Ома для участка цепи, зная величину напряжения, до которой заряжен конденсатор и ток утечки. Но обычно при решении учебных задач сопротивление конденсатора постоянному току считают бесконечно большим.

Сопротивление конденсатора переменному напряжению

При включении конденсатора в цепь с переменным током, ток свободно проходит через конденсатор. Это объясняется очень просто: происходит процесс постоянной зарядки и разрядки конденсатора. При этом говорят, что в цепи присутствует емкостное сопротивление конденсатора, помимо активного сопротивления.

И так, конденсатор, который включен в цепь переменного тока, ведет себя как сопротивление, то есть оказывает влияние на силу тока, текущую в цепи. Величину емкостного сопротивления обозначим как , его величина связана с частотой тока и определена формулой:

где - частота переменного тока; - угловая частота тока; C - емкость конденсатора.

Если конденсатор включен в цепь переменного тока, то в нем не затрачивается мощность, потому что фаза тока сдвинута по отношению к напряжению на . Если рассмотреть один период колебания тока в цепи (T), то происходит следующее: при заряде конденсатора (это составляет ) энергия в поле конденсатора запасается; на следующем отрезке времени () конденсатор разряжается и отдает энергию в цепь. Поэтому ёмкостное сопротивление называют реактивным (безваттным).

Следует заметить, что в каждом реальном конденсаторе реальная мощность (мощность потерь) все же тратится, при течении через него переменного тока. Это вызвано тем, что происходят изменения в состоянии диэлектрика конденсатора. Помимо этого существует некоторая утечка в изоляции обкладок конденсатора, поэтому появляется небольшое активное сопротивление, которое как бы включено параллельно конденсатору.

Примеры решения задач

ПРИМЕР 1

Задание Колебательный контур имеет сопротивление (R), катушку индуктивности (L) и конденсатор емкости C (рис.1). К нему подключено внешнее напряжение, амплитуда которого равна , а частота составляет . Какова амплитуда силы тока в цепи?

Решение Сопротивление контура рис.1 складывается из активного сопротивления R, емкостного сопротивления конденсатора и сопротивления катушки индуктивности . Полное сопротивление цепи (Z), которая содержит названные выше элементы, находят как:

Закон Ома для нашего участка цепи можно записать как:

Выразим искомую амплитуду силы тока из (1.2), подставим вместо Z правую часть формулы (1.1), имеем:

Ответ

Переменный ток - это ток, периодически меняющийся по величине и направлению. Рассмотрим принцип действия генератора переменного тока на примере вращения рамки из проводника в однородном магнитном поле (рис. 6.1).

Пусть рамка имеет площадь S и первоначально расположена в однородном магнитном поле так, что нормаль к плоскости рамки составляет угол a=0 с направлением вектора индукции .

При вращении рамки с угловой скоростью w угол a изменяется по закону , a магнитный поток Ф , пронизывающий рамку, - по закону: . Так как , где Т - период, то .

Изменения магнитного потока возбуждают в рамке ЭДС индук­ции, согласно закону электромагнитной индукции, равную производной от потока по времени (строчными буквами мы будем обозначать мгновенные значения):

Последнее выражение можно переписать в виде: , где - амплитуда ЭДС индукции.

С помощью контактных колец и скользящих по ним щеток концы рамки соединяют с электрической цепью, в которой под действием ЭДС индукции, изменяющейся со временем по гар­моническому закону, возникнет переменный ток такой же частоты. Напряжение на выходных зажимах генератора несколько меньше ЭДС (на величину напряжения на внутреннем сопротивлении - см. раздел 2.2): и также изменяется по гармоническому закону и=U m sin(wt) . Мгновенное значение силы тока в цепи будет равно: , где I m , - амплитуда колебаний тока, j - разность фаз между колебаниями тока и напряжения. Амплитуда тока и разность фаз зависят от характера сопротивления цепи.

Активное, емкостное, индуктивное сопротивление

Активным называется сопротивление, в котором выделяется энергия тока. Таким сопротивлением обладает обычный проводник – резистор. Пусть через резистор (рис. 6.2), подключенный к генератору переменного тока (изображен символом ), протекает ток, изменяющийся по закону . Применим к участку цепи 1,2 закон Ома для мгновенных значений тока и напряжения в виде: . Получаем выражение: , из которого следует, что колебания напряжения на активном сопротивлении совпадают с колебаниями тока по фазе (рис.6.2), так как j = 0. Выражение , стоящее перед знаком синуса, есть амплитуда напряжения . Отсюда следует закон Ома для амплитудных значений:

Мощность, выделяемая в резисторе, равна: . Это мгновенная мощность, зависящая от времени. Она положительна, поскольку в нее входит . Среднее значение равно ½, поэтому средняя мощность (за период) выразится как:

.

Действующим (эффективным) значением силы тока называют величину постоянного тока, который на активном сопротивлении за то же время выделяет такое же количество теплоты, как и данный переменный ток. Действующее значение силы тока связано с амплитудным значением соотношением: . Аналогично определяется действующее значение напряжения: . Использование действующих значений приводит полученные выше формулы для мощности к виду (2.17) - такому же, как для постоянного тока. Отметим, что в законе Ома для амплитуд (6.1) можно использовать и действующие значения тока и напряжения (естественно, одновременно).

Рассмотрим конденсатор в цепи переменного тока (рис. 6.3). Постоянный ток не протекает через конденсатор, поскольку тот фактически разрывает цепь постоянного тока. Однако при возникновении колебаний напряжения на конденсаторе происходит его перезарядка и в подводящих проводах возникают колебания тока. Пусть заряд на конденсаторе меняется по гармоническому закону: .

Сила тока является производной заряда по времени:

Следовательно, колебания силы токаопережают колебания напряжения на конденсаторе на p/2 . Амплитуда силы тока равна . Если ввести емкостное сопротивление , то из последнего выражения можно получить закон Ома для амплитуд:

Если вместо амплитудных значений использовать действующие, то получим закон Ома для действующих значений:

Индуктивность в цепи переменного тока (рис. 6.4) тоже влияет на величину тока, так как возникает ЭДС самоиндукции. Если активным сопротивлением катушки можно пренебречь, то разность потенциалов на катушке равна . Если ток в цепи меняется по закону , то

Колебания силы тока в катушке отстают от колебаний напряжения на p/2. Амплитуда напряжения . Амплитудные (и действующие) значения тока и напряжения также связаны между собой законом Ома:

где - индуктивное сопротивление .

Мгновенное значение мощности переменного тока равно произведению мгновенных значений силы тока и напряжения:

Мгновенная мощность колеблется с удвоенной частотой, принимая как положительные, так и отрицательные значения. В эти моменты (когда мощность отрицательна) цепь отдает мощность внешнему источнику. Практический интерес представляет среднее за период значение мощности:

, (6.4)

или через действующие значения тока и напряжения:

Косинус угла сдвига фаз между током и напряжением называют коэффициентом мощности .

Если в электрической цепи не совершается работа, средняя мощность выделяется в активном сопротивлении в виде тепла. Чем меньше cosj, тем при большем токе выделится заданная мощность. Большие значения тока приводят к бесполезной потере мощности в соединительных проводах, поэтому на практике стараются увеличить коэффициент мощности нагрузки.

При сдвиге фаз j=p/2 (как в конденсаторе или катушке индуктивности без активного сопротивления) средняя выделяемая мощность равна нулю. Поэтому сопротивления X С, X L называются реактивными .

Содержание:

Одним из основных устройств в электронике и электротехнике является конденсатор. После замыкания электрической цепи начинается зарядка, после чего он сразу же становится источником тока и напряжения, в нем возникает электродвижущая сила - ЭДС. Одно из основных свойств конденсатора очень точно отражает формула емкостного сопротивления. Данное явление возникает в результате противодействия ЭДС, направленного против источника тока, используемого для зарядки. Источник тока может преодолеть емкостное сопротивление лишь путем существенных затрат его собственной энергии, которая становится энергией электрического поля конденсатора.

При разрядке устройства вся эта энергия возвращается обратно в цепь, превращаясь в энергию электрического тока. Поэтому емкостное сопротивление можно отнести к реактивному, не вызывающему безвозвратных энергетических потерь. Зарядка конденсатора происходит до того уровня напряжения, которое отдается источником питания.

Емкостное сопротивление конденсатора

Конденсаторы относятся к наиболее распространенным элементам, используемым в различных электронных схемах. Они разделяются на типы, обладающие характерными особенностями, параметрами и индивидуальными свойствами. Простейший конденсатор состоит из двух металлических пластин - электродов, разделенных слоем диэлектрика. На каждом из них имеется собственный вывод, через который осуществляется подключение к электрической цепи.

Существуют качества, присущие только конденсаторам. Например, они совершенно не пропускают через себя постоянный ток, хотя и заряжаются от него. После полной зарядки емкости, течение тока полностью прекращается, а внутреннее сопротивление устройства принимает бесконечно высокое значение.

Совершенно по-другому на конденсатор воздействует , вполне свободно протекающий через емкость. Подобное состояние объясняется постоянными процессами зарядки-разрядки элемента. В этом случае действует не только активное сопротивление проводников, но и емкостное сопротивление самого конденсатора, возникающее как раз в результате его постоянной зарядки и разрядки.

Электрические параметры и свойства конденсаторов могут отличаться, в зависимости от различных факторов. В первую очередь они зависят от размеров и формы изделия, а также от типа диэлектрика. В разных типах устройств может служить бумага, воздух, пластик, стекло, слюда, керамика и другие материалы. В электролитических конденсаторах используются алюминий-электролит и тантал-электролит, что обеспечивает им повышенную емкость.

Названия других элементов определяются материалами обычных диэлектриков. Поэтому они относятся к категории бумажных, керамических, стеклянных и т.д. Каждый из них, в соответствии с характеристиками и особенностями, применяется в конкретных электронных схемах, с разными параметрами электротока.

В связи с этим, применение керамических конденсаторов необходимо в тех цепях, где требуется фильтрация высокочастотных помех. Электролитические устройства, наоборот, фильтруют помехи при низких частотах. Если же соединить параллельно оба типа конденсаторов, получится универсальный фильтр, широко применяемый во всех схемах. Несмотря на то, что их емкость является фиксированной величиной, существуют устройства с переменной емкостью, которая достигается путем регулировок за счет изменение взаимного перекрытия пластин. Типичным примером служат конденсаторы для подстройки, используемые при регулировке радиоэлектронной аппаратуры.

Емкостное сопротивление в цепи переменного тока

При включении конденсатора в цепь постоянного тока, на протяжении короткого периода времени будет наблюдаться течение по цепи зарядного тока. По окончании зарядки, когда напряжение конденсатора будет соответствовать напряжению источника тока, кратковременное течение тока в цепи прекратится. Таким образом, полностью при постоянном токе будет своеобразным разрывом цепи или сопротивлением с бесконечно большим значением. При переменном токе конденсатор будет вести себя совершенно иначе. Его зарядка в такой цепи будет осуществляться поочередно в разных направлениях. Течение переменного тока в цепи в это время не прерывается.

Более подробное рассмотрение этого процесса указывает на нулевое значение напряжения в конденсаторе в момент его включения. После поступления к нему переменного напряжения сети начнется зарядка. В это время сетевое напряжение будет возрастать на протяжении первой четверти периода. По мере того как на обкладках накапливаются заряды, происходит увеличение напряжения самого конденсатора. После того как сетевое напряжение в конце первой четверти периода станет максимальным, зарядка прекращается и значение тока в цепи станет равным нулю.

Существует формула для определения тока в цепи конденсатора: I = ∆q/∆t, где q является количеством электричества, протекающим по цепи в течение промежутка времени t. В соответствии с законами электростатики, количество электричества в устройстве составит: q = C x Uc = C x U. В этой формуле С будет емкостью конденсатора, U - напряжением сети, Uc - напряжением на обкладках элемента. В окончательном виде формула тока в цепи будет выглядеть следующим образом: i = C x (∆Uc/∆t) = C x (∆U/∆t).

При наступлении второй четверти периода произойдет уменьшение сетевого напряжения и начнется разрядка конденсатора. Ток в цепи изменит свое направление и будет течь в обратную сторону. В следующей половине периода направление сетевого напряжения изменится, наступит перезарядка элемента, а потом он вновь начнет разряжаться. Ток, присутствующий в цепи с конденсаторной емкостью, будет опережать по фазе напряжение на обкладках на 90 градусов.

Установлено что изменения тока конденсатора происходят со скоростью, находящейся в пропорциональной зависимости с угловой частотой ω. Поэтому в соответствии с уже известной формулой тока в цепи i = C x (∆U/∆t), аналогично получается, что действующее значение тока также будет представлять собой пропорцию между скоростью изменения напряжения и угловой частотой ω: I = 2π x f x C x U.

Далее уже совсем несложно установить значение емкостного сопротивления или реактивного сопротивления емкости: xc = 1/2π x f x C = 1/ ω x C. Данный параметр вычисляется, когда конденсаторная емкость включается в цепь переменного тока. Поэтому в соответствии с законом Ома в цепи переменного тока с включенным конденсатором, значение силы тока будет следующим: I = U/xc, а напряжение на обкладках составит: Uc = Ic x xc.

Часть сетевого напряжения, приходящаяся на конденсатор, получила название емкостного падения напряжения. Она известна также, как реактивная слагающая напряжения, обозначаемая символом Uc. Величина емкостного сопротивления хс, так же, как и значение индуктивного сопротивления xi напрямую связана с частотой переменного тока.

Если в цепь постоянного тока включить конденсатор (идеальный - без потерь), то в течение короткого времени после включения по цепи потечет зарядный ток. После того как конденсатор зарядится до напряжения, соответствующего напряжению источника, кратковременный ток в цепи прекратится. Следовательно, для постоянного тока конденсатор представляет собой разрыв цепи или бесконечно большое сопротивление.

Если же конденсатор включить в цепь переменного тока, то он будет заряжаться попеременно то в одном, то в другом направлении.

При этом в цепи будет проходить переменный ток. Рассмотрим это явление подробнее.

В момент включения напряжение на конденсаторе равно нулю. Если включить конденсатор к переменному напряжению сети, то в течение первой четверти периода, когда напряжение сети будет возрастать (рисунок 1), конденсатор будет заряжаться.

Рисунок 1. Графики и векторная диаграмма для цепи переменного тока, содержащей емкость

По мере накопления зарядов на обкладках конденсатора напряжение конденсатора увеличивается. Когда напряжение сети к концу первой четверти периода достигнет максимума, заряд конденсатора прекращается и ток в цепи становится равным нулю.

Ток в цепи конденсатора можно определить по формуле:

где q - количество электричества, протекающее по цепи.

Из электростатики известно:

q = C × u C = C × u ,

где C - емкость конденсатора; u - напряжение сети; u C - напряжение на обкладках конденсатора.

Окончательно для тока имеем:

Из последнего выражения видно, что, когда максимально (положения а , в , д ), i также максимально. Когда (положения б , г на рисунке 1), то i также равно нулю.

Во вторую четверть периода напряжение сети будет уменьшаться, и конденсатор начнет разряжаться. Ток в цепи меняет свое направление на обратное. В следующую половину периода напряжение сети меняет свое направление и наступает перезаряд конденсатора и затем снова его разряд. Из рисунка 1 видно, что ток в цепи с емкостью в своих изменениях опережает по фазе на 90° напряжение на обкладках конденсатора.

Сравнивая векторные диаграммы цепей с индуктивностью и емкостью, мы видим, что индуктивность и емкость на фазу тока влияют прямо противоположно.

Поскольку мы отметили выше, что скорость изменения тока пропорциональна угловой частоте ω, из формулы

получаем аналогично, что скорость изменения напряжения также пропорциональна угловой частоте ω и для действующего значения тока имеем

I = 2 × π × f × C × U .

Обозначая , где x C называется емкостным сопротивлением , или реактивным сопротивлением емкости . Итак мы получили формулу емкостного сопротивления при включении емкости в цепи переменного тока. Отсюда, на основании выражения закона Ома, мы можем получить ток для цепи переменного тока, содержащей емкость:

Напряжение на обкладках конденсатора

U C = I C × x C .

Та часть напряжения сети, которая имеется на конденсаторе, называется емкостным падением напряжения , или реактивной слагающей напряжения , и обозначается U C .

Емкостное сопротивление x C , так же как индуктивное сопротивление x L , зависит от частоты переменного тока.

Но если с увеличением частоты индуктивное сопротивление увеличивается, то емкостное сопротивление, наоборот, будет уменьшаться.

Пример 1. Определить емкостное реактивное сопротивление конденсатора емкостью 5 мкФ при разных частотах сетевого напряжения. Расчет емкостного сопротивления произведем при частоте 50 и 40 Гц:

при частоте 50 Гц:

при частоте 400 Гц:

Применим формулу средней или активной мощности для рассматриваемой цепи:

P = U × I × cos φ .

Так как в цепи с емкостью ток опережает напряжение на 90°, то

φ = 90°; cos φ = 0 .

Поэтому активная мощность также равна нулю, то есть в такой цепи, как и в цепи с индуктивностью, расхода мощности нет.

На рисунке 2 показана кривая мгновенной мощности в цепи с емкостью. Из чертежа видно, что в первую четверть периода цепь с емкостью забирает из сети энергию, которая запасается в электрическом поле конденсатора.


Рисунок 2. Кривая мгновенной мощности в цепи с емкостью

Энергию, запасаемую конденсатором к моменту прохождения напряжения на нем через максимум, можно определить по формуле:

В следующую четверть периода конденсатор разряжается на сеть, отдавая ей ранее запасенную в нем энергию.

За вторую половину периода явление колебаний энергии повторяется. Таким образом, в цепи с емкостью происходит лишь обмен энергией между сетью и конденсатором без потерь.