Мегафон

Пределы функций. Примеры решений

Теория пределов – это один из разделов математического анализа. Вопрос решения пределов является достаточно обширным, поскольку существуют десятки приемов решений пределов различных видов. Существуют десятки нюансов и хитростей, позволяющих решить тот или иной предел. Тем не менее, мы все-таки попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике.

Начнем с самого понятия предела. Но сначала краткая историческая справка. Жил-был в 19 веке француз Огюстен Луи Коши, который дал строгие определения многим понятиям матана и заложил его основы. Надо сказать, этот уважаемый математик снился, снится и будет сниться в кошмарных снах всем студентам физико-математических факультетов, так как доказал огромное количество теорем математического анализа, причём одна теорема убойнее другой. В этой связи мы пока не будем рассматривать определение предела по Коши , а попытаемся сделать две вещи:

1. Понять, что такое предел.
2. Научиться решать основные типы пределов.

Прошу прощения за некоторую ненаучность объяснений, важно чтобы материал был понятен даже чайнику, что, собственно, и является задачей проекта.

Итак, что же такое предел?

А сразу пример, чего бабушку лохматить….

Любой предел состоит из трех частей :

1) Всем известного значка предела .
2) Записи под значком предела, в данном случае . Запись читается «икс стремится к единице». Чаще всего – именно , хотя вместо «икса» на практике встречаются и другие переменные. В практических заданиях на месте единицы может находиться совершенно любое число, а также бесконечность ().
3) Функции под знаком предела, в данном случае .

Сама запись читается так: «предел функции при икс стремящемся к единице».

Разберем следующий важный вопрос – а что значит выражение «икс стремится к единице»? И что вообще такое «стремится»?
Понятие предела – это понятие, если так можно сказать, динамическое . Построим последовательность: сначала , затем , , …, , ….
То есть выражение «икс стремится к единице» следует понимать так – «икс» последовательно принимает значения, которые бесконечно близко приближаются к единице и практически с ней совпадают .

Как решить вышерассмотренный пример? Исходя из вышесказанного, нужно просто подставить единицу в функцию, стоящую под знаком предела:

Итак, первое правило: Когда дан любой предел, сначала просто пытаемся подставить число в функцию .

Мы рассмотрели простейший предел, но и такие встречаются на практике, причем, не так уж редко!

Пример с бесконечностью:

Разбираемся, что такое ? Это тот случай, когда неограниченно возрастает, то есть: сначала , потом , потом , затем и так далее до бесконечности.

А что в это время происходит с функцией ?
, , , …

Итак: если , то функция стремится к минус бесконечности :

Грубо говоря, согласно нашему первому правилу, мы вместо «икса» подставляем в функцию бесконечность и получаем ответ .

Еще один пример с бесконечностью:

Опять начинаем увеличивать до бесконечности и смотрим на поведение функции:

Вывод: при функция неограниченно возрастает :

И еще серия примеров:

Пожалуйста, попытайтесь самостоятельно мысленно проанализировать нижеследующее и запомните простейшие виды пределов:

, , , , , , , , ,
Если где-нибудь есть сомнения, то можете взять в руки калькулятор и немного потренироваться.
В том случае, если , попробуйте построить последовательность , , . Если , то , , .

! Примечание : строго говоря, такой подход с построением последовательностей из нескольких чисел некорректен, но для понимания простейших примеров вполне подойдет.

Также обратите внимание на следующую вещь. Даже если дан предел с большим числом вверху, да хоть с миллионом: , то все равно , так как рано или поздно «икс» начнёт принимать такие гигантские значения, что миллион по сравнению с ними будет самым настоящим микробом .

Что нужно запомнить и понять из вышесказанного?

1) Когда дан любой предел, сначала просто пытаемся подставить число в функцию.

2) Вы должны понимать и сразу решать простейшие пределы, такие как , , и т.д.

Более того, у предела есть очень хороший геометрический смысл. Для лучшего понимания темы рекомендую ознакомиться с методическим материалом Графики и свойства элементарных функций . После прочтения этой статьи вы не только окончательно поймете, что такое предел, но и познакомитесь с интересными случаями, когда предела функции вообще не существует !

На практике, к сожалению, подарков немного. А поэтому переходим к рассмотрению более сложных пределов. Кстати, по этой теме есть интенсивный курс в pdf-формате, который особенно полезен, если у Вас ОЧЕНЬ мало времени на подготовку. Но материалы сайта, разумеется, не хуже:


Сейчас мы рассмотрим группу пределов, когда , а функция представляет собой дробь, в числителе и знаменателе которой находятся многочлены

Пример:

Вычислить предел

Согласно нашему правилу попытаемся подставить бесконечность в функцию. Что у нас получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида . Можно было бы подумать, что , и ответ готов, но в общем случае это вовсе не так, и нужно применить некоторый прием решения, который мы сейчас и рассмотрим.

Как решать пределы данного типа?

Сначала мы смотрим на числитель и находим в старшей степени:

Старшая степень в числителе равна двум.

Теперь смотрим на знаменатель и тоже находим в старшей степени:

Старшая степень знаменателя равна двум.

Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке.

Итак, метод решения следующий: для того, чтобы раскрыть неопределенность необходимо разделить числитель и знаменатель на в старшей степени .



Вот оно как, ответ , а вовсе не бесконечность.

Что принципиально важно в оформлении решения?

Во-первых, указываем неопределенность, если она есть.

Во-вторых, желательно прервать решение для промежуточных объяснений. Я обычно использую знак , он не несет никакого математического смысла, а обозначает, что решение прервано для промежуточного объяснения.

В-третьих, в пределе желательно помечать, что и куда стремится. Когда работа оформляется от руки, удобнее это сделать так:

Для пометок лучше использовать простой карандаш.

Конечно, можно ничего этого не делать, но тогда, возможно, преподаватель отметит недочеты в решении либо начнет задавать дополнительные вопросы по заданию. А оно Вам надо?

Пример 2

Найти предел
Снова в числителе и знаменателе находим в старшей степени:

Максимальная степень в числителе: 3
Максимальная степень в знаменателе: 4
Выбираем наибольшее значение, в данном случае четверку.
Согласно нашему алгоритму, для раскрытия неопределенности делим числитель и знаменатель на .
Полное оформление задания может выглядеть так:

Разделим числитель и знаменатель на

Пример 3

Найти предел
Максимальная степень «икса» в числителе: 2
Максимальная степень «икса» в знаменателе: 1 ( можно записать как )
Для раскрытия неопределенности необходимо разделить числитель и знаменатель на . Чистовой вариант решения может выглядеть так:

Разделим числитель и знаменатель на

Под записью подразумевается не деление на ноль (делить на ноль нельзя), а деление на бесконечно малое число.

Таким образом, при раскрытии неопределенности вида у нас может получиться конечное число , ноль или бесконечность.


Пределы с неопределенностью вида и метод их решения

Следующая группа пределов чем-то похожа на только что рассмотренные пределы: в числителе и знаменателе находятся многочлены, но «икс» стремится уже не к бесконечности, а к конечному числу .

Пример 4

Решить предел
Сначала попробуем подставить -1 в дробь:

В данном случае получена так называемая неопределенность .

Общее правило : если в числителе и знаменателе находятся многочлены, и имеется неопределенности вида , то для ее раскрытия нужно разложить числитель и знаменатель на множители .

Для этого чаще всего нужно решить квадратное уравнение и (или) использовать формулы сокращенного умножения. Если данные вещи позабылись, тогда посетите страницу Математические формулы и таблицы и ознакомьтесь с методическим материалом Горячие формулы школьного курса математики . Кстати его лучше всего распечатать, требуется очень часто, да и информация с бумаги усваивается лучше.

Итак, решаем наш предел

Разложим числитель и знаменатель на множители

Для того чтобы разложить числитель на множители, нужно решить квадратное уравнение:

Сначала находим дискриминант:

И квадратный корень из него: .

В случае если дискриминант большой, например 361, используем калькулятор, функция извлечения квадратного корня есть на самом простом калькуляторе.

! Если корень не извлекается нацело (получается дробное число с запятой), очень вероятно, что дискриминант вычислен неверно либо в задании опечатка.

Далее находим корни:

Таким образом:

Всё. Числитель на множители разложен.

Знаменатель. Знаменатель уже является простейшим множителем, и упростить его никак нельзя.

Очевидно, что можно сократить на :

Теперь и подставляем -1 в выражение, которое осталось под знаком предела:

Естественно, в контрольной работе, на зачете, экзамене так подробно решение никогда не расписывают. В чистовом варианте оформление должно выглядеть примерно так:

Разложим числитель на множители.





Пример 5

Вычислить предел

Сначала «чистовой» вариант решения

Разложим числитель и знаменатель на множители.

Числитель:
Знаменатель:



,

Что важного в данном примере?
Во-первых, Вы должны хорошо понимать, как раскрыт числитель, сначала мы вынесли за скобку 2, а затем использовали формулу разности квадратов. Уж эту-то формулу нужно знать и видеть.

Рекомендация: Если в пределе (практически любого типа) можно вынести число за скобку, то всегда это делаем.
Более того, такие числа целесообразно выносить за значок предела . Зачем? Да просто чтобы они не мешались под ногами. Главное, потом эти числа не потерять по ходу решения.

Обратите внимание, что на заключительном этапе решения я вынес за значок предела двойку, а затем – минус.

! Важно
В ходе решения фрагмент типа встречается очень часто. Сокращать такую дробь нельзя . Сначала нужно поменять знак у числителя или у знаменателя (вынести -1 за скобки).
, то есть появляется знак «минус», который при вычислении предела учитывается и терять его совсем не нужно.

Вообще, я заметил, что чаще всего в нахождении пределов данного типа приходится решать два квадратных уравнения, то есть и в числителе и в знаменателе находятся квадратные трехчлены.


Метод умножения числителя и знаменателя на сопряженное выражение

Продолжаем рассматривать неопределенность вида

Следующий тип пределов похож на предыдущий тип. Единственное, помимо многочленов, у нас добавятся корни.

Пример 6

Найти предел

Начинаем решать.

Сначала пробуем подставить 3 в выражение под знаком предела
Еще раз повторяю – это первое, что нужно выполнять для ЛЮБОГО предела . Данное действие обычно проводится мысленно или на черновике.

Получена неопределенность вида , которую нужно устранять.

Как Вы, наверное, заметили, у нас в числителе находится разность корней. А от корней в математике принято, по возможности, избавляться. Зачем? А без них жизнь проще.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Определение и этапы доказательства теоремы Штольца, ее теоретическое и практическое значение в прикладной математике, применение. Понятие предела последовательности, характерные примеры вычисления пределов последовательности с подробным разбором решения.

    курсовая работа , добавлен 28.02.2010

    Члены последовательности и их изображение на числовой оси. Виды последовательностей (ограниченная, возрастающая, убывающая, сходящаяся, расходящаяся), их практические примеры. Определение и геометрический смысл предела числовой последовательности.

    презентация , добавлен 21.09.2013

    Вычисление математических последовательностей и определение числа, которое называется пределом последовательности. Методы расчетов предела функции. Произведение бесконечно малой функции и ограниченной функции. Определение предела последовательности.

    контрольная работа , добавлен 17.12.2010

    Определение предела функции в точке. Понятие односторонних пределов. Геометрический смысл предела функции при х, стремящемся в бесконечности. Основные теоремы о пределах. Вычисление пределов и раскрытие неопределенностей. Первый замечательный предел.

    презентация , добавлен 14.11.2014

    Понятие и история формирования категории "последовательность", ее значение в современной математике. Свойства и аналитическое задание последовательности, роль в развитии других областей знания. Решение задач на вычисление пределов последовательностей.

    презентация , добавлен 17.03.2017

    Общее понятие числовой последовательности. Предел функции в точке. Бесконечно большая и малая функция. Связь между функцией, ее пределом и бесконечно малой функцией. Признаки существования пределов. Основные теоремы о пределах: краткая характеристика.

    презентация , добавлен 25.01.2013

    Предел числовой последовательности. Сравнение бесконечно малых величин. Второй замечательный предел. Теорема Коши о сходимости числовой последовательности. Использование бинома Ньютона. Замена сомножителей на эквивалентные им более простые величины.

    контрольная работа , добавлен 11.08.2009

    Понятие возрастающей числовой последовательности. Формула бинома Ньютона. Число положительных слагаемых. Определение ограниченности последовательности чисел. Предел монотонной и ограниченной последовательностей. Показательный рост или убывание.

    Теория пределов - один из разделов математического анализа, который одним под силу освоить, другие с трудом вычисляют пределы. Вопрос нахождения пределов является достаточно общим, поскольку существуют десятки приемов решения пределов различных видов. Одни и те же предела можно найти как по правилу Лопиталя, так и без него. Бывает, что расписание в ряд бесконечно малых функций позволяет быстро получить нужный результат. Существуют набор приемов и хитростей, позволяющих найти предел функции любой сложности. В данной статье попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике. Теорию и определение предела мы здесь давать не будем, в интернете множество ресурсов где это разжевано. Поэтому займемся практическим вычислениям, именно здесь у Вас и начинается "не знаю! Не умею! Нас не учили!"

    Вычисление пределов методом подстановки

    Пример 1. Найти предел функции
    Lim((x^2-3*x)/(2*x+5),x=3).

    Решение: Такого сорта примеры по теории вычисляют обычной подстановкой

    Предел равен 18/11.
    Ничего сложного и мудрого в таких пределах нет - подставили значение, вычислили, записали предел в ответ. Однако на базе таких пределов всех приучают, что прежде всего нужно подставить значение в функцию. Далее пределы усложняют, вводят понятие бесконечности, неопределенности и тому подобные.

    Предел с неопределенностью типа бесконечность разделить на бесконечность. Методы раскрытия неопределенности

    Пример 2. Найти предел функции
    Lim((x^2+2x)/(4x^2+3x-4),x=infinity).
    Решение: Задан предел вида полином разделить на полином, причем переменная стремится к бесконечности

    Простая подстановка значения к которому следует переменная найти пределов не поможет, получаем неопределенность вида бесконечность разделить на бесконечность.
    Пот теории пределов алгоритм вычисления предела заключается в нахождении наибольшего степени "икс" в числителе или знаменателе. Далее на него упрощают числитель и знаменатель и находят предел функции

    Поскольку значение стремятся к нулю при переменной к бесконечности то ими пренебрегают, или записывают в конечный выражение в виде нулей

    Сразу из практики можно получить два вывода которые являются подсказкой в вычислениях. Если переменная стремится к бесконечности и степень числителя больше от степени знаменателя то предел равен бесконечности. В противном случае, если полином в знаменателе старшего порядка чем в числителе предел равен нулю.
    Формулами предел можно записать так

    Если имеем функцию вида обычный поленом без дробей то ее предел равен бесконечности

    Следующий тип пределов касается поведения функций возле нуля.

    Пример 3. Найти предел функции
    Lim((x^2+3x-5)/(x^2+x+2), x=0).
    Решение: Здесь уже выносить старший множитель полинома не требуется. С точностью до наоборот, необходимо найти наименьший степень числителя и знаменателя и вычислить предел

    Значение x^2; x стремятся к нулю когда переменная стремится к нулю Поэтому ими пренебрегают, таким образом получим

    что предел равен 2,5.

    Теперь Вы знаете как найти предел функции вида полином разделить на полином если переменная стремится к бесконечности или 0. Но это лишь небольшая и легкая часть примеров. Из следующего материала Вы научитесь как раскрывать неопределенности пределов функции .

    Предел с неопределенностью типа 0/0 и методы его вычислений

    Сразу все вспоминают правило согласно которому делить на ноль нельзя. Однако теория пределов в этом контексте подразумеваем бесконечно малые функции.
    Рассмотрим для наглядности несколько примеров.

    Пример 4. Найти предел функции
    Lim((3x^2+10x+7)/(x+1), x=-1).

    Решение: При подстановке в знаменатель значения переменной x = -1 получим ноль, то же самое получим в числителе. Итак имеем неопределенность вида 0/0.
    Бороться с такой неопределенностью просто: нужно разложить полином на множители, а точнее выделить множитель, который превращает функцию в ноль.

    После разложения предел функции можно записать в виде

    Вот и вся методика вычисления предела функции. Так же поступаем если есть предел вида многочлен разделить на многочлен.

    Пример 5. Найти предел функции
    Lim((2x^2-7x+6)/(3x^2-x-10), x=2).

    Решение: Прямая подстановка показывает
    2*4-7*2+6=0;
    3*4-2-10=0

    что имеем неопределенность типа 0/0 .
    Разделим полиномы на множитель которій вносит особенность


    Есть преподаватели которые учат, что полиномы 2 порядка то есть вида "квадратные уравнения" следует решать через дискриминант. Но реальная практика показывает что это дольше и запутаннее, поэтому избавляйтесь особенности в пределах по указанному алгоритму. Таким образом записываем функцию в виде простых множителей и вічисляем в предел

    Как видите, ничего сложного в исчислении таких пределов нет. Делить многочлены Вы на момент изучения пределов умеете, по крайней мере согласно программе должны уже пройти.
    Среди задач на неопределенность типа 0/0 встречаются такие в которых нужно применять формулы сокращенного умножения. Но если Вы их не знаете, то делением многочлена на одночлен можно получить нужную формулу.

    Пример 6. Найти предел функции
    Lim((x^2-9)/(x-3), x=3).
    Решение: Имеем неопределенность типа 0/0 . В числителе применяем формулу сокращенного умножения

    и вычисляем нужній предел

    Метод раскрытия неопределенности умножением на сопряженное

    Метод применяют к пределам в которіхнеопределенность порождают иррациональные функции. Числитель или знаменатель превращается в точке вычисления в ноль и неизвестно как найти границу.

    Пример 7. Найти предел функции
    Lim((sqrt(x+2)-sqrt(7x-10))/(3x-6), x=2).
    Решение:
    Представим переменную в формулу предела

    При подстановки получим неопределенность типа 0/0.
    Согласно теории пределов схема обхода данной особенности заключается в умножении иррационального выражения на сопряженное. Чтобы выражение не изменилось знаменатель нужно разделить на такое же значение

    По правилу разности квадратов упрощаем числитель и вычисляем предел функции

    Упрощаем слагаемые, создающие особенность в пределе и выполняем подстановку

    Пример 8. Найти предел функции
    Lim((sqrt(x-2)-sqrt(2x-5))/(3-x), x=3).
    Решение: Прямая подстановка показывает что предел имеет особенность вида 0/0.

    Для раскрытия умножаем и делим на сопряженное к числителю

    Записываем разницу квадратов

    Упрощаем слагаемые которые вносят особенность и находим предел функции

    Пример 9. Найти предел функции
    Lim((x^2+x-6)/(sqrt(3x-2)-2), x=2).
    Решение: Подставим двойку в формулу

    Получим неопределенность 0/0 .
    Знаменатель нужно умножить на сопряженный выражение, а в числителе решить квадратное уравнение или разложить на множители, учитывая особенность. Поскольку известно, что 2 является корнем, то второй корень находим по теореме Виета

    Таким образом числитель запишем в виде

    и подставим в предел

    Сведя разницу квадратов избавляемся особенности в числителе и знаменателе

    Приведенным образом можно избавиться особенности во многих примерах, а применение надо замечать везде где заданная разница корней превращается в ноль при подстановке. Другие типы пределов касаются показательных функций, бесконечно малых функций, логарифмов, особых пределов и других методик. Но об этом Вы сможете прочитать в перечисленных ниже статьях о пределах.

    Энциклопедичный YouTube

    • 1 / 5

      Интуитивное понятие о предельном переходе использовалось еще учеными Древней Греции при вычислении площадей и объемов раз­личных геометрических фигур. Методы решения таких задач в основном были развиты Архимедом .

      При создании дифференциального и инте­грального исчислений математики XVII века (и, прежде всего, Нью­тон) также явно или неявно использовали понятие предельного перехода. Впервые определение понятия предела было введено в работе Валлиса «Арифметика бесконечных величин» (XVII век), однако истори­чески это понятие не лежало в основе дифференциального и интеграль­ного исчислений.

      С помощью теории пределов во второй половине XIX века было, в частности, обосновано использование в анализе бесконеч­ных рядов, которые явились удобным аппаратом для построения новых функций.

      Предел последовательности

      Основная статья: Предел последовательности

      Число a {\displaystyle a} называется пределом последовательности a n = { x 1 , x 2 , . . . , x n } {\displaystyle a_{n}=\{x_{1},x_{2},...,x_{n}\}} , если ϵ > 0 {\displaystyle \epsilon >0} , ∃ {\displaystyle \exists } N (ϵ) {\displaystyle N(\epsilon)} , ∀ {\displaystyle \forall } n > N (ϵ) {\displaystyle n>N(\epsilon)} : | a n − a | < ϵ {\displaystyle |a_{n}-a|<\epsilon } . Предел последовательности обозначается lim n → + ∞ a n {\displaystyle \lim _{n\to +\infty }a_{n}} . Куда именно стремится n {\displaystyle n} , можно не указывать, поскольку n {\displaystyle n} ∈ N {\displaystyle \in \mathbb {N} } , оно может стремиться только к + ∞ {\displaystyle +\infty } .

      Свойства:

      • Если предел последовательности существует, то он единственный.
      • lim c = c {\displaystyle \lim c=c} , c − c o n s t {\displaystyle ,c-const}
      • lim (x n + y n) = lim x n + lim y n {\displaystyle \lim(x_{n}+y_{n})=\lim x_{n}+\lim y_{n}}
      • lim (q x n) = q lim x n {\displaystyle \lim(qx_{n})=q\lim x_{n}} , q − c o n s t {\displaystyle ,q-const}
      • lim (x n y n) = lim x n lim y n {\displaystyle \lim(x_{n}y_{n})=\lim x_{n}\lim y_{n}} (если оба предела существуют)
      • lim (x n / y n) = lim x n / lim y n {\displaystyle \lim(x_{n}/y_{n})=\lim x_{n}/\lim y_{n}} (если оба предела существуют и знаменатель правой части не ноль)
      • Если a n > x n > b n ∀ n {\displaystyle a_{n}>x_{n}>b_{n}\forall n} и lim a n = lim b n {\displaystyle \lim a_{n}=\lim b_{n}} , то lim x n = lim a n = lim b n {\displaystyle \lim x_{n}=\lim a_{n}=\lim b_{n}} (теорема «о зажатой последовательности», также известная, как «теорема о двух милиционерах»)

      Предел функции

      Основная статья: Предел функции

      Число b называется пределом функции f(x) в точке a, если ∀ ϵ > 0 {\displaystyle \forall \epsilon >0} существует δ > 0 {\displaystyle \delta >0} , такое что ∀ x , 0 < | x − a | < δ {\displaystyle \forall x,0<|x-a|<\delta } выполняется | f (x) − b | < ϵ {\displaystyle |f(x)-b|<\epsilon } .

      Для пределов функций справедливы аналогичные свойства, как и для пределов последовательностей, например, lim x → x 0 (f (x) + g (x)) = lim x → x 0 f (x) + lim x → x 0 g (x) {\displaystyle \lim _{x\to x_{0}}(f(x)+g(x))=\lim _{x\to x_{0}}f(x)+\lim _{x\to x_{0}}g(x)} , если все члены существуют.

      Обобщенное понятие предела последовательности

      Пусть X {\displaystyle X} - некоторое множество, в котором определено понятие окрестности U {\displaystyle U} (например, метрическое пространство). Пусть x i ∈ X {\displaystyle x_{i}\in X} - последовательность точек (элементов) этого пространства. Говорят, что x ∈ X {\displaystyle x\in X} есть предел этой последовательности, если в любой окрестности точки x {\displaystyle x} лежат почти все члены последовательности то есть ∀ U (x) ∃ n ∀ i > n x i ∈ U (x) {\displaystyle \forall U(x)\exists n\forall i>nx_{i}\in U(x)}

      Посвящены одному из основных понятий математического анализа - пределу. И в случае числовой последовательности и в случае действительной функции действительного переменного исследовано неограниченное приближение к некоторому постоянному значению переменной величины, зависящей от другой переменной при определенном ее изменении. В этой главе попытаемся обобщить понятие предела для отображений произвольных метрических пространству причем обобщение коснется и способа стремления независимого переменного к заданному значению. 8.1. Понятие предела отображения Пусть X и У - метрические пространства с заданными на них метриками р и d соответственно, X - некоторое подмножество в X с той же метрикой />, имеющее а 6 X своей предельной точкой. Подчеркнем, что в силу определения 5.9 эта предельная для А точка может как принадлежать, так и не принадлежать подмножеству А. Будем рассматривать ТЕОРИЯ ПРЕДЕЛОВ. Понятие предела отображения проколотую окрестность U(a) = U(a) \ {а} данной точки. Пусть область определения отображения /: А У включат ет множество А. Отметим, что для точки а это отображение может и не быть определено. Определение 8.1. Точку 6 € У называют пределом отображения /: A -f У в точке а по множеству А и записывают b = lim f(x) или f(x) -> b при х-^а, если, како- ва бы ни была окрестность V(6) точки 6, существует такая проколотая окрестность U(a) точки а в X, что ее образ для любой точки ж€Ща)ПЛ принадлежит У(6),т.е. При выполнении (8.1) говорят также, что функция f(x) стремится к Ь при стремлении х по множеству А к точке а. Определение 8.1 является достаточно общим. В зависимости от того, какими множествами являются X, У, АСХ и какова точка а € X, можно получить различные конкретизации этого определения. Напомним (см. 5.2), что любая окрестность точки включает е-окрестность этой точки и всякая ^-окрестность является окрестностью. Поэтому, заменяя в (8.1) произвольную окрестность V (6) точки b б Y на ее ^-окрестность а проколотую окрестность точки а € X - на ее проколотую -окрестность приходим к следующей символической записи определения предела отображения, эквивалентного определению 8.1: При Y С R из (8.1) следует символическая запись определения предела отображения /: (предела действительной функции): . Бели в (8.5) 6 = 0) то функцию f(x) называют бесконечно малой при стремлении х по множеству А к точке а € X и записывают При У С R можно говорить о бесконечных пределах отображения, если точка 6 является одной из бесконечных точек (+оо или -оо) расширенной числовой прямой R или их объединением (оо). В этом случае окрестность каждой из перечисленных точек при выборе произвольного М > О примет вид Тогда из (8.1) следуют три довольно похожих между собой за-писи в символической форме определений бесконечных пределов функции: . Пример 8.1. Покажем, что lim f(x) = с, если отображение / в точках множества А принимает одно и то же значение с. В самом деле, какой бы ни была окрестность ТЕОРИЯ ПРЕДЕЛОВ. Понятие предела отображения V(c) точки с} Vx в U (а) П A /(х) = с, так как хе А. Поэтому /(U (а) П А) = с € V(c), что соответствует определению 8.1. Убедимся, что lim /(х) = а, если отображение / тождественно, т.е. /(я) = х Vx 6 А. В этом случае для любой окрестности V(a) при выборе U(a) = = V(a) \ {а} для тождественного отображения получим что отвечает (8.1). В частности, когда А = R и а соответствует бесконечной точке +оо расширенной числовой прямой, имеем: /(х) -f оо при х +оо. Действительно, при произвольном М > 0 в качестве проколотой окрестности бесконечной точки +оо достаточно выбрать множество U (+оо) = = {s € R: х > М}, чтобы получить /(х) > М и удовлетворить условию (8.7). # Если в определении 8.1 X = У = R и подмножество А = = {а: € R: х > а}, то приходим к понятию правостороннего предела действительной функции действительного переменного в точке а, обозначенного в 7.2 lim fix). Если же X = У = R Отметим, что множество А может совпадать со всем множеством X. При X = Y = R этот случай в определении 8.1 соответствует понятию двустороннего предела действительной функции действительного переменного, причем (если нет угрозы путаницы) вместо lim /(х) пишут просто lim /(х). Конечно, говоря о lim /(х), можно рассматривать всевоз-можные мыслимые подмножества А, но не всегда это приводит к содержательным нетривиальным результатам. Так, если функцию Дирихле рассматривать на подмножестве Q С R рациональных чисел, то получим просто постоянную функцию, предел которой установлен в примере 8.1. При определение 8.1 приведет к понятию предела последовательности точек произвольного метрического пространства У. В связи с этим дадим следующее определение. Определение 8.2. Точку 6 € У называют пределом последовательности {уп} точек уп метрического пространства У, если, какова бы ни была окрестность V(6) С У точки 6, существует натуральное число N , такое, что начиная с номера N +1 все точки данной последовательности попадают в эту окрестность, т.е. ТЕОРИЯ ПРЕДЕЛОВ. Понятие предела отображения При выполнении (8.10) говорят также, что {уп} стремится к точке 6. Использовав в (8.10) вместо произвольной окрестности точки 6 ее произвольную ^-окрестность, будем иметь Сравнивая (8.11) с (6.28) и определением 6.5, заключаем, что последовательность {уп} точек уп метрического пространства стремится к точке 6, если числовая последовательность {d(yn> 6)} расстояний d(yni b) € R бесконечно малая, т.е. Иначе говоря, исследование поведения последовательностей точек произвольного метрического пространства опирается на исследование сходимости числовых последовательностей. Более того, и предел отображения произвольных метрических пространств тесно связан с пределом последовательностей. Эту связь устанавливает следующая теорема. Теорема 8.1. Отображение /:У имеет точку 6 € У своим пределом при стремлении х по множеству А к точке а тогда и только тогда, когда при отображении / образ любой стремящейся к а последовательности точек из А является последовательностью точек из У, стремящейся к 6, т.е. Предположим, что точка 6 б У удовлетворяет определению 8.1 предела отображения и {х„} - произвольная последовательность точек хп из А, стремящаяся к точке a € X. Тогда, согласно (8.1), какова бы ни была окрестность V(b) С У точки 6, существует проколотая окрестность U(a) С X точ- ки а, такая, что /(и(а)ПА) С V(6). По определению 8.2, в U(a)nA должны лежать начиная с некоторого номера W + 1 все точки стремящейся к а последовательности {хп}» т.е. в силу (8.10) Тогда начиная с того же номера все точки f(xn) Е У последовательности {f(xn)} лежат в V(6), что, согласно определению 8.2, означает, что эта последовательность стремится к 6. Чтобы доказать достаточность условия теоремы, предположим, что для любой стремящейся к а последовательности {хп} точек хп из А последовательность {/(х„)} точек f(xn) из У стремится к 6. Если бы lim f(x) ф 6, то это означало бы существование такого числа е > 0, что при любом выборе 8 > 0 имеется точка х € А, удовлетворяющая условиям р(х, а) и d(f(x)y 6) > е. При сколь угодно малом S > О можно указать натуральное число N) такое, что 1 /N . Тогда для каждого номера п > N найдется хотя бы одна точка из А, которую обозначим хп, такая, что р(хп, ^ Таким образом, последовательность {хп}, составленная из таких точек хп 6 Ау в силу (8.11) стремится к а, тогда как {/(хп)} не стремится к 6, а это противоречит исходному предположению. Полученное противоречие доказывает достаточность условия теоремы. Эта теорема позволяет сформулировать определение, эквивалентное определению 8.1. Определение 8.3. Точку б€ У называют пределом отображения /: А -> У в точке а по множеству А, если при отображении / образ любой стремящейся к а последоваг тельности точек из А является последовательностью точек из У, стремящейся к Ь. Символические формы записи этого определения и теоремы 8.1 совпадают. Пример 8.2. Пусть X = R, А = R, а = +оо и в отображении /: R R f(x) = cos2 Vx 6 R. Покажем, что lim f(x) = lim cos a; не существует. Возьмем последовательность {a:n} = {2птг}, которая стремится к +оо. Тогда cosin = соз2птг = 1, и в силу (6.9) lim {cos xn} = 1. Если же взять последовательность {хп} = {(2п + 1)тг/2}, также стремящуюся к +оо, то ее образ сходится к нулю. Это противоречит определению 8.3 предела отображения, т.е. указанный выше предел не существует. Рассмотрение стремящихся к оо последовательностей {2п(-1)п7г} и {(2п+ 1)(-1)птг/2} приводит к тому же выводу. Отметим, что если обозначить то правомерна запись lim cosx = 1 и limcoex = 0. # Сопоставлением определений 8.1 и 5.13 может быть доказана следующая теорема. Теорема 8.2. Отображение /: X -+Y будет непрерывным в точке а € X в том и только том случае, когда предел отображения при стремлении х по множеству X к точке а совпадает со значением /(а), т.е. когда Л Пусть отображение / непрерывно в точке а в X. Тогда, по определению 5.13 непрерывного отображения, какова бы ни была окрестность V(6) точки 6 = /(а) € У, существует такая окрестность U(a) точки а € А} что /(U(a)) С V(6), а ТЕОРИЯ ПРЕДЕЛОВ. Понятие предела отображения стало быть, существует и проколотая окрестность U (а) точки а, такая, что /(U(a)) С V(b). Согласно определению 8.1 это означает, что справедливо (8.12). Обратно, пусть выполнено (8.12). Тогда в силу определения 8.1 для любой окрестности V (Ь) точки b = /(a) су- ществует проколотая окрестность U(a) точки а, такая, что /(U(a)) С V(6). Рассмотрим окрестность U(a) = U(a) U {a}. Поскольку /(a) G V(6), согласно свойствам отображения множеств (см. 2.1), имеем 4 т.е. отображение / по определению 5.13 непрерывно в точке аеХ. С учетом теоремы 8.2 можно сформулировать определение, эквивалентное определению 5.13. Определение 8.4. Отображение /: называют непрерывным в точке а 6 Ху если справедливо (8.12). Учитывая теоремы 8.1 и 8.2, получаем следующее утверждение. Утверждение 8.1. Для непрерывности отображения /: X -У Y в предельной точке абХ необходимо и достаточно, чтобы образ при отображении / любой стремящейся к а последовательности точек из X был последовательностью точек из У, сходящейся к точке /(а). 8.2. Некоторые свойства предела отображения Пусть X и У, так же как и в 8.1, - метрические пространства, AC X и а € X - предельная точка множества А. Теорема 8.3. Бели при стремлении х по множеству А к точке а отображение /: X У имеет предел, то он единственный. Предположим, что при х-^а отображение / имеет два предела 6i и 62, причем 61 ф 62. Тогда при выборе непересекающихся окрестностей этих точек (V(61)flV(62) = 0), по определению 8.1, у точки а существует проколотая окрестность U(a), такая, что и, а это невозможно в силу определения 2.1 отображения. Теорема 8.4 (о пределе композиции). Бели существуют пределы отображений /: AC X и д: У Z, причем {(х)фЬ при г-^a, где Ху У и Z - метрические пространства предельные точки соответственно для А С X и f(A) С У, то существует при х-^а и предел композиции (сложной функции) Выберем произвольную окрестность W (с) точки с. Тогда в силу определения 8.1 предела отображения всегда можно найти такую проколотую окрестность V(6) точки 6, что д(V(6) П f}