Ростелеком

Процесс запуска спутника. Как запускают спутник. Установка солнечной панели на мини-спутник Marco CubeSats

И частные компании, и некоммерческие организации, и отдельные энтузиасты всё чаще собирают деньги на космические проекты через краудфандинговые платформы. Рассказываем о наиболее интересных идеях.

Увидеть следы «Аполлонов»

Вопрос, были ли американцы на Луне, волнует огромное число людей по всему миру. А уж россиян — особенно.

Четыре года назад известный популяризатор космонавтики, блогер Виталий Егоров предложил получить ответ на «проклятый» вопрос самым что ни на есть прямым способом — отправить на орбиту Луны спутник, который сфотографирует места посадки «Аполлонов». Всего их, напомним, было шесть, и в окрестностях должно сохраниться много следов астронавтов, оставленных ими артефактов (вплоть до луномобилей), да и просто мусора.

«Сейчас на орбиту чуть ли не каждый месяц запускают частные и студенческие спутники, — рассказал Виталий Егоров на недавней презентации проекта, проходившей в Музее космонавтики. — Мы решили замахнуться на что-нибудь посложнее. А это Луна. Как известно, общество волнуют два вопроса: существуют ли инопланетяне и были ли американцы на Луне. Я лично не сомневаюсь, что американцы на Луне были. С инопланетянами непонятно, но мы их отложили на потом, а пока решили сконцентрироваться на более реальной цели».

В октябре 2015 года Егоров объявил о сборе средств на постройку «народного» микроспутника. Тогда менее чем за три дня блогер со своей командой собрал свыше миллиона рублей. Первая версия космического аппарата была весьма скромной — с небольшим двигателем и солнечными батареями. Но затем, изучив все нюансы предстоящей миссии, участники проекта были вынуждены увеличить массу спутника, добавить ему полноценный жидкостный двигатель и мощную антенну. Зонд оснастят фотоаппаратурой, которая сделает очень чёткие снимки: каждый пиксель будет соответствовать 25 см поверхности Луны.

С 2015 года аппарат всячески упрощали, и нынешняя его версия — уже четвёртая. Но чтобы построить спутник, средств понадобится примерно в тысячу раз больше, чем было собрано с помощью краудфандинга. Участники рассчитывают на разные варианты финансирования — на частных спонсоров, рекламные контракты, а также на помощь со стороны общества, бизнеса и государства.

«Если сегодня к нам придёт потенциальный спонсор и подарит грузовик, наполненный деньгами, мы сможем подготовить аппарат и доставить его на Байконур или Восточный в ближайшие три года, — отметил Виталий Егоров. — Когда его запустят, будет зависеть от того, какие ракеты окажутся доступны. Но на этот запуск будут смотреть все, ведь людей, верящих в лунный заговор, хватает».

На что скидываются на Западе?

Первым космическим проектом англоязычной краудфандинговой платформы Kickstarter была предпринятая девять лет назад попытка запустить в атмосферу очень большой воздушный шар, чтобы сфотографировать Землю с высоты 40 км (это уже считается ближним космосом). Удалось собрать 296 долларов.

Наиболее шумной кампанией сбора средств на той же платформе стоит признать Arkyd-100. Это проект «космического телескопа для всех». О нём в 2013 году объявила фирма Planetary Resources, которая намеревалась заняться добычей полезных ископаемых на астероидах. В общей сложности было собрано более 1,5 млн долларов. Жертвователям обещали «космические селфи» на борту телескопа и съемку астрономических объектов по желанию. Однако в 2016 году было объявлено, что запуск телескопа не состоится. Деньги должны были вернуть.

10 фантастических снимков телескопа «Хаббл»

Ещё одна компания собирается отправить на Луну космический зонд, чтобы он просверлил скалы на её Южном полюсе. Уже привлечено более миллиона долларов. А некоммерческое «Планетарное общество» (Planetary Society) 10 лет собирало средства на миссию крошечного спутника с солнечным парусом LightSail. Цель проекта была проста — показать, что создание такого космического аппарата в принципе возможно. Его стоимость оценивалась в 1,8 млн долларов, и эти деньги, в конце концов, были собраны. 25 июня 2019 года солнечный парусник отправился на орбиту.

Среди других космических проектов, получивших финансирование от интернет-общественности, можно упомянуть SkyCube (сверхмалый спутник, «надувающий» блестящий воздушный шар, видимый с Земли), KickSat (на орбите он должен выпустить рой крохотных спутников размером с почтовую марку) и Plasma Jet Electric Thrusters (плазменный двигатель, который найдёт применение в космонавтике будущего).

...и на что — у нас?

В России тоже собирали деньги на запуск стратосферного зонда. Автор идеи — спасатель и фотограф Денис Ефремов . Сначала он вместе с другом отправил в стратосферу видеокамеру в честь юбилея полёта Юрия Гагарина . А затем объявил о сборе средств на запуск стратостата. Достигнув критического размера на большой высоте, этот шар должен лопнуть, а платформа с оборудованием — спуститься на парашюте.

«Моя цель — устроить детский научный фестиваль на базе крупной образовательной программы, — сообщал Денис Ефремов. — Ядро проекта — запуски в ближний космос на высоту до 40 км. Отправить что-то своё в космос, следить за полётом, искать место приземления и снова взять в руки то, что побывало „там“, — это чудо! Дети получают стимул интересоваться наукой. Они своими глазами видят и могут придумать сами, как применить знания на практике. И, наконец, запуск и поиски платформы на природе — это настоящее приключение, которое вытащит из соцсетей любого школьника!»

Проект стал успешным. Планировалось собрать 140 тыс. рублей, в итоге удалось привлечь 155 тыс.

В 2014 году группа энтузиастов создала сообщество «Твой сектор космоса», которое впервые на практике доказало, что в России любители космонавтики могут запустить на орбиту свой собственный космический аппарат. Им стал спутник «Маяк». Cредства собирали методом краудфандинга за две кампании, в 2014 и 2016 годах. Всего собрали около 2,5 млн рублей. Непосредственно на создание лётного экземпляра аппарата, его дублёра и их испытания ушло порядка 1 млн рублей.

«Мы показали, что можно придумать спутник вместе с друзьями, без огромных заводов и сложных лабораторий построить его и запустить в самый настоящий космос, — делится впечатлениями руководитель проекта Александр Шаенко , инженер и кандидат технических наук. — Идея была в том, чтобы создать яркий светящийся объект, видимый невооруженным глазом».

Было решено снабдить спутник солнечным отражателем в виде пирамиды из металлизированной плёнки, который после выхода на орбиту должен развернуться. «Маяк» должен был почти на месяц стать самой яркой мерцающей звездой на ночном небе. Аппарат запустили 14 июля 2017 года с космодрома «Байконур» и успешно вывели на орбиту одновременно с 72 другими спутниками. К сожалению, отражатель так и не раскрылся. Вместе с «Маяком» отказали ещё 9 спутников, запущенных на ракете-носителе.

Вторым проектом сообщества «Твой сектор космоса» стал фотобиореактор для выращивания микроскопических зелёных водорослей. Его назвали 435nm. В дальнейшем на основе созданной установки планируется построить космическую систему жизнеобеспечения и испытать её в орбитальном полёте.

«Россия наряду с другими странами участвует в марсианской гонке, и мы заинтересованы в том, чтобы наша страна вышла из неё победителем, — говорит Александр Шаенко. — Одна из важных частей проекта по освоению Красной планеты — разработка космических кораблей, а для них необходимы технологии жизнеобеспечения. Поэтому в нашем сообществе и зародился проект биореактора 435nm».

Сбор средств завершили в марте 2018, команде удалось привлечь 407 тыс. рублей. Был создан прототип, проведены его испытания. Примечательно, что технология найдёт применение не только в космосе, но и на Земле. Такие фотобиореакторы можно будет использовать для очистки стоков или воздуха, выработки сырья для биотоплива и других практических задач.

«Человек должен подняться над Землей - в атмосферу и за ее пределы - ибо только так он полностью поймет мир, в котором живет».

Сократ сделал это наблюдение за века до того, как люди успешно вывели объект на земную орбиту. И все же древнегреческий философ, кажется, понял, насколько ценным может быть вид из космоса, хотя совершенно не знал, как этого достичь.

Этому понятию - о том, как вывести объект «в атмосферу и за ее пределы» - пришлось ждать до тех пор, пока Исаак Ньютон не опубликовал свой знаменитый мысленный эксперимент с пушечным ядром в 1729 году. Выглядит он примерно так:

«Представьте, что вы поместили пушку на вершину горы и выстрелили из нее горизонтально. Пушечное ядро будет путешествовать параллельно поверхности Земли некоторое время, но в конечном счете уступит силе тяжести и упадет на Землю. Теперь представьте, что вы продолжаете добавлять порох в пушку. С дополнительными взрывами ядро будет путешествовать дальше и дальше, пока не упадет. Добавьте нужное количество пороха и придайте ядру правильное ускорение, и оно будет постоянно лететь вокруг планеты, всегда падая в гравитационном поле, но никогда не достигая земли».

В октябре 1957 года Советский Союз наконец подтвердил догадку Ньютона, запустив «Спутник-1» - первый искусственный спутник на орбите Земли. Это инициировало космическую гонку и многочисленные запуски объектов, которым предназначалось летать вокруг Земли и других планет Солнечной системы. С момента запуска «Спутника» некоторые страны, по большей части США, Россия и Китай, запустили более 3000 спутников в космос. Некоторые из этих сделанными людьми объектов, например МКС, большие. Другие отлично умещаются в небольшом сундучке. Благодаря спутникам мы получаем прогнозы погоды, смотрим телевизор, сидим в Интернете и звоним по телефону. Даже те спутники, работу которых мы не ощущаем и не видим, отлично служат в пользу военных.

Конечно, запуск и эксплуатация спутников привели к проблемам. Сегодня, учитывая более 1000 рабочих спутников на земной орбите, наш ближайший космический район стал оживленнее, чем крупный город в час пик. Приплюсуйте к этому нерабочее оборудование, заброшенные спутники, части аппаратного обеспечения и фрагменты от взрывов или столкновений, которые наполняют небеса вместе с полезным оборудованием. Этот орбитальный мусор, о котором мы , накапливался на протяжении многих лет и представляет серьезную угрозу для спутников, в настоящее время кружащим вокруг Земли, а также для будущих пилотируемых и непилотируемых запусков.

В этой статье мы залезем в кишки обычного спутника и заглянем в его глаза, чтобы увидеть виды нашей планеты, о которых Сократ и Ньютон не могли и мечтать. Но сначала давайте подробнее разберемся, чем, собственно, спутник отличается от других небесных объектов.


- это любой объект, который движется по кривой вокруг планеты. Луна - это естественный спутник Земли, также рядом с Землей находится множество спутников, сделанных руками человека, так сказать, искусственных. Путь, по которому следует спутник, это орбита, иногда принимающая форму окружности.

Чтобы понять, почему спутники движутся таким образом, мы должны навестить нашего друга Ньютона. Он предположил, что сила гравитации существует между двумя любыми объектами во Вселенной. Если бы этой силы не было, спутники, летящие вблизи планеты, продолжали бы свое движение с одной скоростью и в одном направлении - по прямой. Эта прямая - инерционный путь спутника, который, однако, уравновешивается сильным гравитационным притяжением, направленным к центру планеты.

Иногда орбита спутника выглядит как эллипс, приплюснутый круг, который проходит вокруг двух точек, известных как фокусы. В этом случае работают все те же законы движения, разве что планеты расположены в одном из фокусов. В результате, чистая сила, приложенная к спутнику, не проходит равномерно по всему его пути, и скорость спутника постоянно меняется. Он движется быстро, когда находится ближе всего к планете - в точке перигея (не путать с перигелием), и медленнее, когда находится дальше от планеты - в точке апогея.

Спутники бывают самых разных форм и размеров и выполняют самые разнообразные задачи.

  • Метеорологические спутники помогают метеорологам прогнозировать погоду или видеть, что происходит с ней в данный момент. Геостационарный эксплуатационный экологический спутник (GOES) представляет хороший пример. Эти спутники обычно включают камеры, которые демонстрируют погоду Земли.
  • Спутники связи позволяют телефонным разговорам ретранслироваться через спутник. Наиболее важной особенностью спутника связи является транспондер - радио, которое получает разговор на одной частоте, а после усиливает его и передает обратно на Землю на другой частоте. Спутник обычно содержит сотни или тысячи транспондеров. Спутники связи, как правило, геосинхронные (об этом позже).
  • Телевизионные спутники передают телевизионные сигналы из одной точки в другую (по аналогии со спутниками связи).
  • Научные спутники, как некогда космический телескоп Хаббла, выполняют все виды научных миссий. Они наблюдают за всем — от солнечных пятен до гамма-лучей.
  • Навигационные спутники помогают летать самолетам и плавать кораблям. GPS NAVSTAR и спутники ГЛОНАСС - яркие представители.
  • Спасательные спутники реагируют на сигналы бедствия.
  • Спутники наблюдения за Землей отмечают изменения — от температуры до ледяных шапок. Наиболее известные - серия Landsat.

Военные спутники также находятся на орбите, но большая часть их работы остается тайной. Они могут ретранслировать зашифрованные сообщения, осуществлять наблюдение за ядерным оружием, передвижениями противника, предупреждать о запусках ракет, прослушивать сухопутное радио, осуществлять радиолокационную съемку и картографирование.

Когда были изобретены спутники?


Возможно, Ньютон в своих фантазиях и запускал спутники, но прежде чем мы на самом деле совершили этот подвиг, прошло немало времени. Одним из первых визионеров был писатель-фантаст Артур Кларк. В 1945 году Кларк предположил, что спутник может быть размещен на орбите так, что будет двигаться в том же направлении и с той же скоростью, что и Земля. Так называемые геостационарные спутники можно было бы использовать для связи.

Ученые не понимали Кларка - до 4 октября 1957 года. Тогда Советский Союз запустил «Спутник-1», первый искусственный спутник, на орбиту Земли. «Спутник» был 58 сантиметров в диаметре, весил 83 килограмма и был выполнен в форме шарика. Хотя это было замечательное достижение, содержание «Спутника» было скудным по сегодняшним меркам:

  • термометр
  • батарея
  • радиопередатчик
  • газообразный азот, который был под давлением внутри спутника

На внешней стороне «Спутника» четыре штыревые антенны передавали на коротковолновой частоте выше и ниже нынешнего стандарта (27 МГц). Станции слежения на Земле поймали радиосигнал и подтвердили, что крошечный спутник пережил запуск и успешно вышел на курс вокруг нашей планеты. Месяцем позже Советский Союз запустил на орбиту «Спутник-2». Внутри капсулы была собака Лайка.

В декабре 1957 года, отчаянно пытаясь идти в ногу со своими противниками по холодной войне, американские ученые попытались вывести спутник на орбиту вместе с планетой Vanguard. К сожалению, ракета разбилась и сгорела еще на стадии взлета. Вскоре после этого, 31 января 1958 года, США повторили успех СССР, приняв план Вернера фон Брауна, который заключался в выводе спутника Explorer-1 с ракетой U.S. Redstone. Explorer-1 нес инструменты для обнаружения космических лучей и обнаружил в ходе эксперимента Джеймса Ван Аллена из Университета Айовы, что космических лучей гораздо меньше, чем ожидалось. Это привело к открытию двух тороидальных зон (в конечном счете названных в честь Ван Аллена), наполненных заряженными частицами, захваченными магнитным полем Земли.

Воодушевленные этими успехами, некоторые компании начали разрабатывать и запускать спутники в 60-х годах. Одной из них была Hughes Aircraft вместе со звездным инженером Гарольдом Розеном. Розен возглавил команду, которая воплотила идею Кларка - спутник связи, размещенный на орбите Земли таким образом, что мог отражать радиоволны из одного места в другое. В 1961 году NASA заключило контракт с Hughes, чтобы построить серию спутников Syncom (синхронная связь). В июле 1963 года Розен и его коллеги увидели, как Syncom-2 взлетел в космос и вышел на грубую геосинхронную орбиту. Президент Кеннеди использовал новую систему, чтобы поговорить с премьер-министром Нигерии в Африке. Вскоре взлетел и Syncom-3, который на самом деле мог транслировать телевизионный сигнал.

Эпоха спутников началась.

Какая разница между спутником и космическим мусором?


Технически, спутник это любой объект, который вращается вокруг планеты или меньшего небесного тела. Астрономы классифицируют луны как природные спутники, и на протяжении многих лет они составили список из сотен таких объектов, обращающихся вокруг планет и карликовых планет нашей Солнечной системы. К примеру, насчитали 67 лун Юпитера. И до сих пор .

Техногенные объекты, вроде «Спутника» и Explorer, также можно классифицировать как спутники, поскольку они, как и луны, вращаются вокруг планеты. К сожалению, человеческая активность привела к тому, что на орбите Земли оказалось огромное количество мусора. Все эти куски и обломки ведут себя как и крупные ракеты - вращаются вокруг планеты на высокой скорости по круговому или эллиптическому пути. В строгом толковании определения можно каждый такой объект определить как спутник. Но астрономы, как правило, считают спутниками те объекты, которые выполняют полезную функцию. Обломки металла и другой хлам попадают в категорию орбитального мусора.

Орбитальный мусор поступает из многих источников:

  • Взрыв ракеты, который производит больше всего хлама.
  • Астронавт расслабил руку - если астронавт ремонтирует что-то в космосе и упускает гаечный ключ, тот потерян навсегда. Ключ выходит на орбиту и летит со скоростью около 10 км/с. Если он попадет в человека или в спутник, результаты могут быть катастрофическими. Крупные объекты, вроде МКС, представляют собой большую мишень для космического мусора.
  • Выброшенные предметы. Части пусковых контейнеров, шапки объективов камер и так далее.

NASA вывело специальный спутник под названием LDEF для изучения долгосрочных эффектов от столкновения с космическим мусором. За шесть лет инструменты спутника зарегистрировали около 20 000 столкновений, некоторые из которых были вызваны микрометеоритами, а другие орбитальным мусором. Ученые NASA продолжают анализировать данные LDEF. А вот в Японии уже гигантскую сеть для отлова космического мусора.

Что внутри обычного спутника?


Спутники бывают разных форм и размеров и выполняют множество различных функций, однако все, в принципе, похожи. Все они имеют металлический или композитный каркас и тело, которое англоязычные инженеры называют bus, а русские - космической платформой. Космическая платформа собирает все вместе и обеспечивает достаточно мер, чтобы инструменты пережили запуск.

У всех спутников есть источник питания (обычно солнечные батареи) и аккумуляторы. Массивы солнечных батарей позволяют заряжать аккумуляторы. Новейшие спутники включают и топливные элементы. Энергия спутников очень дорога и крайне ограничена. Ядерные элементы питания обычно используются для отправки космических зондов к другим планетам.

У всех спутников есть бортовой компьютер для контроля и мониторинга различных систем. У всех есть радио и антенна. Как минимум, у большинства спутников есть радиопередатчик и радиоприемник, поэтому экипаж наземной команды может запросить информацию о состоянии спутника и наблюдать за ним. Многие спутники позволяют массу различных вещей: от изменения орбиты до перепрограммирования компьютерной системы.

Как и следовало ожидать, собрать все эти системы воедино - непростая задача. Она занимает годы. Все начинается с определения цели миссии. Определение ее параметров позволяет инженерам собрать нужные инструменты и установить их в правильном порядке. Как только спецификация утверждена (и бюджет), начинается сборка спутника. Она происходит в чистой комнате, в стерильной среде, что позволяет поддерживать нужную температуру и влажность и защищать спутник во время разработки и сборки.

Искусственные спутники, как правило, производятся на заказ. Некоторые компании разработали модульные спутники, то есть конструкции, сборка которых позволяет устанавливать дополнительные элементы согласно спецификации. К примеру, у спутников Boeing 601 было два базовых модуля - шасси для перевозки двигательной подсистемы, электроника и батареи; и набор сотовых полок для хранения оборудования. Эта модульность позволяет инженерам собирать спутники не с нуля, а с заготовки.

Как спутники запускаются на орбиту?


Сегодня все спутники выводятся на орбиту на ракете. Многие перевозят их в грузовом отделе.

В большинстве запусков спутников запуск ракеты происходит прямо вверх, это позволяет быстрее провести ее через толстый слой атмосферы и минимизировать расход топлива. После того, как ракета взлетает, механизм управления ракеты использует инерциальную систему наведения для расчета необходимых корректировок сопла ракеты, чтобы обеспечить нужный наклон.

После того как ракета выходит в разреженный воздух, на высоту около 193 километров, система навигации выпускает небольшие ракетки, чего достаточно для переворота ракеты в горизонтальное положение. После этого выпускается спутник. Небольшие ракеты выпускаются снова и обеспечивают разницу в расстоянии между ракетой и спутником.

Орбитальная скорость и высота

Ракета должна набрать скорость в 40 320 километров в час, чтобы полностью сбежать от земной гравитации и улететь в космос. Космическая скорость куда больше, чем нужно спутнику на орбите. Они не избегают земной гравитации, а находятся в состоянии баланса. Орбитальная скорость - это скорость, необходимая для поддержания баланса между гравитационным притяжением и инерциальным движением спутника. Это примерно 27 359 километров в час на высоте 242 километра. Без гравитации инерция унесла бы спутник в космос. Даже с гравитацией, если спутник будет двигаться слишком быстро, его унесет в космос. Если спутник будет двигаться слишком медленно, гравитация притянет его обратно к Земле.

Орбитальная скорость спутника зависит от его высоты над Землей. Чем ближе к Земле, тем быстрее скорость. На высоте в 200 километров орбитальная скорость составляет 27 400 километров в час. Для поддержания орбиты на высоте 35 786 километров спутник должен обращаться со скорость 11 300 километров в час. Эта орбитальная скорость позволяет спутнику делать один облет в 24 часа. Поскольку Земля также вращается 24 часа, спутник на высоте в 35 786 километров находится в фиксированной позиции относительно поверхности Земли. Эта позиция называется геостационарной. Геостационарная орбита идеально подходит для метеорологических спутников и спутников связи.

В целом, чем выше орбита, тем дольше спутник может оставаться на ней. На низкой высоте спутник находится в земной атмосфере, которая создает сопротивление. На большой высоте нет практически никакого сопротивления, и спутник, как луна, может находиться на орбите веками.

Типы спутников


На земле все спутники выглядят похоже - блестящие коробки или цилиндры, украшенные крыльями из солнечных панелей. Но в космосе эти неуклюжие машины ведут себя совершенно по-разному в зависимости от траектории полета, высоты и ориентации. В результате, классификация спутников превращается в сложное дело. Один из подходов - определение орбиты аппарата относительно планеты (обычно Земли). Напомним, что существует две основных орбиты: круговая и эллиптическая. Некоторые спутники начинают по эллипсу, а потом выходят на круговую орбиту. Другие движутся по эллиптическому пути, известному как орбита «Молния». Эти объекты, как правило, кружат с севера на юг через полюсы Земли и завершают полный облет за 12 часов.

Полярно-орбитальные спутники также проходят через полюсы с каждым оборотом, хотя их орбиты менее эллиптические. Полярные орбиты остаются фиксированными в космосе, в то время как вращается Земля. В результате, большая часть Земли проходит под спутником на полярной орбите. Поскольку полярные орбиты дают прекрасный охват планеты, они используются для картографирования и фотографии. Синоптики также полагаются на глобальную сеть полярных спутников, которые облетают наш шар за 12 часов.

Можно также классифицировать спутники по их высоте над земной поверхностью. Исходя из этой схемы, есть три категории:

  • Низкая околоземная орбита (НОО) - НОО-спутники занимают область пространства от 180 до 2000 километров над Землей. Спутники, которые движутся близко к поверхности Земли, идеально подходят для проведения наблюдений, в военных целях и для сбора информации о погоде.
  • Средняя околоземная орбита (СОО) - эти спутники летают от 2000 до 36 000 км над Землей. На этой высоте хорошо работают навигационные спутники GPS. Примерная орбитальная скорость - 13 900 км/ч.
  • Геостационарная (геосинхронная) орбита - геостационарные спутники двигаются вокруг Земли на высоте, превышающей 36 000 км и на той же скорости вращения, что и планета. Поэтому спутники на этой орбите всегда позиционируются к одному и тому же месту на Земле. Многие геостационарные спутники летают по экватору, что породило множество «пробок» в этом регионе космоса. Несколько сотен телевизионных, коммуникационных и погодных спутников используют геостационарную орбиту.

И наконец, можно подумать о спутниках в том смысле, где они «ищут». Большинство объектов, отправленных в космос за последние несколько десятилетий, смотрят на Землю. У этих спутников есть камеры и оборудование, которое способно видеть наш мир в разных длинах волн света, что позволяет насладиться захватывающим зрелищем в ультрафиолетовых и инфракрасных тонах нашей планеты. Меньше спутников обращают свой взгляд к пространству, где наблюдают за звездами, планетами и галактиками, а также сканируют объекты вроде астероидов и комет, которые могут столкнуться с Землей.

Известные спутники


До недавнего времени спутники оставались экзотическими и сверхсекретными приборами, которые использовались в основном в военных целях для навигации и шпионажа. Теперь они стали неотъемлемой частью нашей повседневной жизни. Благодаря им, мы узнаем прогноз погоды (хотя синоптики ой как часто ошибаются). Мы смотрим телевизоры и работаем с Интернетом также благодаря спутникам. GPS в наших автомобилях и смартфонах позволяет добраться до нужного места. Стоит ли говорить о неоценимом вкладе телескопа «Хаббл» и работы космонавтов на МКС?

Однако есть настоящие герои орбиты. Давайте с ними познакомимся.

  1. Спутники Landsat фотографируют Землю с начала 1970-х годов, и по части наблюдений за поверхностью Земли они рекордсмены. Landsat-1, известный в свое время как ERTS (Earth Resources Technology Satellite) был запущен 23 июля 1972 года. Он нес два основных инструмента: камеру и многоспектральный сканер, созданный Hughes Aircraft Company и способный записывать данные в зеленом, красном и двух инфракрасных спектрах. Спутник делал настолько шикарные изображения и считался настолько успешным, что за ним последовала целая серия. NASA запустило последний Landsat-8 в феврале 2013 года. На этом аппарате полетели два наблюдающих за Землей датчика, Operational Land Imager и Thermal Infrared Sensor, собирающие многоспектральные изображения прибрежных регионов, полярных льдов, островов и континентов.
  2. Геостационарные эксплуатационные экологические спутники (GOES) кружат над Землей на геостационарной орбите, каждый отвечает за фиксированную часть земного шара. Это позволяет спутникам внимательно наблюдать за атмосферой и выявлять изменения погодных условий, которые могут привести к торнадо, ураганам, паводкам и грозовым штормам. Также спутники используются для оценки сумм осадков и накопления снегов, измерения степени снежного покрова и отслеживания передвижений морского и озерного льда. С 1974 года на орбиту было выведено 15 спутников GOES, но одновременно за погодой наблюдают только два спутника GOES «Запад» и GOES «Восток».
  3. Jason-1 и Jason-2 сыграли ключевую роль в долгосрочном анализе океанов Земли. NASA запустило Jason-1 в декабре 2001 года, чтобы заменить им спутник NASA/CNES Topex/Poseidon, который работал над Землей с 1992 года. На протяжении почти тринадцати лет Jason-1 измерял уровень моря, скорость ветра и высоту волн более 95 % свободных от льда земных океанов. NASA официально списало Jason-1 3 июля 2013 года. В 2008 году на орбиту вышел Jason-2. Он нес высокоточные инструменты, позволяющие измерять дистанцию от спутника до поверхности океана с точностью в несколько сантиметров. Эти данные, помимо ценности для океанологов, предоставляют обширный взгляд на поведение мировых климатических паттернов.

Сколько стоят спутники?


После «Спутника» и Explorer, спутники стали больше и сложнее. Возьмем, к примеру, TerreStar-1, коммерческий спутник, который должен был обеспечить передачу мобильных данных в Северной Америке для смартфонов и подобных устройств. Запущенный в 2009 году TerreStar-1 весил 6910 килограмм. И будучи полностью развернутым, он раскрывал 18-метровую антенну и массивные солнечные батареи с размахом крыльев в 32 метра.

Строительство такой сложной машины требует массы ресурсов, поэтому исторически только правительственные ведомства и корпорации с глубокими карманами могли войти в спутниковый бизнес. Большая часть стоимости спутника лежит в оборудовании - транспондерах, компьютерах и камерах. Обычный метеорологический спутник стоит около 290 миллионов долларов. Спутник-шпион обойдется на 100 миллионов долларов больше. Добавьте к этому стоимость содержания и ремонта спутников. Компании должны платить за пропускную полосу спутника так же, как владельцы телефонов платят за сотовую связь. Обходится иногда это более чем в 1,5 миллиона долларов в год.

Другим важным фактором является стоимость запуска. Запуск одного спутника в космос может обойтись от 10 до 400 миллионов долларов, в зависимости от аппарата. Ракета Pegasus XL может поднять 443 килограмма на низкую околоземную орбиту за 13,5 миллиона долларов. Запуск тяжелого спутника потребует большей подъемной силы. Ракета Ariane 5G может вывести на низкую орбиту 18 000-килограммовый спутник за 165 миллионов долларов.

Несмотря на затраты и риски, связанные с постройкой, запуском и эксплуатацией спутников, некоторые компании сумели построить целый бизнес на этом. К примеру, Boeing. В 2012 году компания доставила в космос около 10 спутников и получила заказы на более чем семь лет, что принесло ей почти 32 миллиарда долларов дохода.

Будущее спутников


Спустя почти пятьдесят лет после запуска «Спутника», спутники, как и бюджеты, растут и крепнут. США, к примеру, потратили почти 200 миллиардов долларов с начала военной спутниковой программы и теперь, несмотря на все это, обладает флотом стареющих аппаратов, ожидающих своей замены. Многие эксперты опасаются, что строительство и развертывание крупных спутников просто не может существовать на деньги налогоплательщиков. Решением, которое может перевернуть все с ног на голову, остаются частные компании, вроде SpaceX, и другие, которых явно не постигнет бюрократический застой, как NASA, NRO и NOAA.

Другое решение - сокращение размера и сложности спутников. Ученые Калтеха и Стэнфордского университета с 1999 года работают над новым типом спутника CubeSat, в основе которого лежат строительные блоки с гранью в 10 сантиметров. Каждый куб содержит готовые компоненты и может объединиться с другими кубиками, чтобы повысить эффективность и снизить нагрузку. Благодаря стандартизации дизайна и сокращению расходов на создание каждого спутника с нуля, один CubeSat может стоить всего 100 000 долларов.

В апреле 2013 года NASA решила проверить этот простой принцип и три CubeSat на базе коммерческих смартфонов. Цель состояла в том, чтобы вывести микроспутники на орбиту на короткое время и сделать несколько снимков на телефоны. Теперь агентство планирует развернуть обширную сеть таких спутников.

Будучи большими или маленькими, спутники будущего должны быть в состоянии эффективно сообщаться с наземными станциями. Исторически сложилось так, что NASA полагалось на радиочастотную связь, но РЧ достигла своего предела, поскольку возник спрос на большую мощность. Чтобы преодолеть это препятствие, ученые NASA разрабатывают систему двусторонней связи на основе лазеров вместо радиоволн. 18 октября 2013 года ученые впервые запустили лазерный луч для передачи данных с Луны на Землю (на расстоянии 384 633 километра) и получили рекордную скорость передачи в 622 мегабита в секунду.

Завтра весь мир празднует День космонавтики. 12 апреля 1961 года Советский союз впервые в истории запустил пилотируемый корабль на борту которого был Юрий Гагарин. Сегодня мы покажем, как с космодрома "Байконур" в конце 2011 года с помощью ракетоносителя “Протон-М” был запущен второй казахстанский телекоммуникационный спутник “КазСат-2” (KazSat-2). Как аппарат был запущен на орбиту, в каком он состоянии, как и откуда производится его управление? Об этом мы узнаем в этом фоторепортаже.

1. 12-е июля 2011-го года. Cамую тяжелую российскую ракету космического назначения “Протон-М” с казахстанским спутником связи №2 и американским SES-3 (OS-2) вывозят на стартовую позицию. “Протон-М” запускают только с космодрома “Байконур”. Именно здесь существует необходимая инфраструктура для обслуживания этой сложнейшей ракетно-космической системы. Российская сторона, а именно производитель аппарата, космический центр имени Хруничева, гарантирует, что “КазСат-2” прослужит не менее 12-ти лет.

С момента подписания договора о создании спутника проект несколько раз перерабатывался, а сам запуск откладывался, по меньшей мере, три раза. В результате “КазСат-2” получил принципиально новую элементную базу и новый алгоритм управления. Но самое главное, на спутнике были смонтированы новейшие и очень надежные навигационные приборы, производства французского концерна ASTRIUM.

Это гироскопический измеритель вектора угловой скорости и астродатчики. С помощью астродатчиков спутник ориентирует себя в пространстве по звездам. Именно отказ навигационного оборудования привел к тому, что первый “КазСат” был фактически потерян в 2008-м году, что почти вызвало международный скандал.

2. Путь ракеты с подключенными к ней системами энергоснабжения и термостатирования головной части, где расположены разгонный блок “Бриз-М” и спутники занимает около 3-х часов. Скорость движения специального железнодорожного состава 5-7 километров в час, состав обслуживает команда специально подготовленных машинистов.

Еще одна группа сотрудников службы безопасности космодрома осматривает железнодорожные пути. Малейшая не расчетная нагрузка может повредить ракету. В отличие от своего предшественника, “КазСат” стал более энергоемким.

Количество передатчиков увеличилось до 16-ти. На “КазСате-1” их было 12. А суммарная мощность транспондеров увеличена до 4 с половиной киловатт. Это позволит прокачивать на порядок больше всевозможных данных. Все эти изменения отразились на стоимости аппарата. Она составила 115 миллионов долларов. Первый аппарат обошелся Казахстану в 65 миллионов.

3. За всем происходящим спокойно наблюдают обитатели местной степи. Корабли пустыни)

4. Размеры и возможности этой ракеты на самом деле поражают воображение. Ее длина составляет 58,2 метра, масса в заправленном состоянии 705 тонн. На старте тяга 6-ти двигателей первой ступени ракетоносителя составляет около 1 тыс. тонн. Это позволяет выводить на опорную околоземную орбиту объекты массой до 25-ти тонн, а на высокую геостационарную (30 тыс. км. от поверхности Земли)- до 5-ти тонн. Поэтому “Протон-М” незаменим, когда речь идет о запуске телекоммуникационных спутников.

Двух одинаковых космических аппаратов просто не бывает, потому что каждый космический аппарат - это совершенно новые технологии. За короткий период, бывает так, что приходится менять совершенно новые элементы. В “КазCате-2” применены те новые передовые технологии, которые на тот момент уже были. Была поставлена часть оборудования европейского производства, в части той, где у нас были отказы на “КазСат-1”. Я думаю, что оборудование, которое у нас сейчас работает на “КазСат-2” должно показать хорошие результаты. Оно имеет достаточно хорошую летную историю

5. На космодроме в настоящее время имеются 4 стартовые позиции для ракетоносителя “Протон”. Однако, только 3 из них, на площадках № 81 и № 200 находятся в рабочем состоянии. Ранее пусками этой ракеты занимались только военные из-за того, что работа с токсичным топливом требовала жесткого командного руководства. Сегодня комплекс демилитаризирован, хотя в составе боевых расчетов очень много бывших военных, снявших погоны.

Орбитальная позиция второго “КазСата” стала намного удобнее для работы. Это 86 с половиной градусов восточной долготы. Зона покрытия включает всю территорию Казахстана, часть Центральной Азии и России.

6. Закаты на космодроме “Байконур” исключительно технологические! Массивная конструкция чуть правее центра снимка - это “Протон-М” с подведенной к нему фермой обслуживания. С момента вывоза ракеты на стартовую позицию площадки № 200, и до момента старта проходит 4 суток. Все это время проводится подготовка и тестирование систем “Протона-М”. Примерно за 12 часов до старта проводится заседание государственной комиссии, которая дает разрешение на заправку ракеты топливом. Заправка начинается за 6 часов до старта. С этого момента все операции становятся необратимыми.

7. Какую же выгоду получает наша страна обладая собственным спутником связи? Прежде всего - это решение проблемы информационного обеспечения Казахстана. Свой спутник поможет расширить спектр информационных услуг для всего населения страны. Это услуга электронного правительства, интернета, мобильной связи. Самое главное, что казахстанский спутник позволит частично отказаться от услуг иностранных телекоммуникационных компаний, предоставляющих нашим оператором услуги по ретрансляции. Речь идет о десятках миллионов долларов, которые будут теперь уходить не за рубеж, а поступать в бюджет страны.

Виктор Лефтер, президент Республиканского центра космической связи:

Казахстан имеет достаточно большую территорию, по сравнению с другими странами. И надо понимать, что в каждый населенный пункт, в каждую деревенскую, сельскую школу мы не сможем подать те услуги связи, которые ограничены средствами кабельных и других систем. Космический аппарат решает эту проблему. Практически закрывается вся территория. Более того, не только территория Казахстана, но и часть территории соседних государств. И спутник - это стабильная возможность обеспечения связью

8. Различные модификации ракетоносителя “Протон” эксплуатируются с 1967-го года. Его главным конструктором был академик Владимир Челомей и его КБ (в настоящее время - КБ «Салют», филиал ГКНПЦ им. М.В.Хруничева). Можно смело утверждать, что все впечатляющие советские проекты по освоению околоземного пространства и изучению объектов Солнечной системы были бы неосуществимы без этой ракеты. Кроме того, “Протон” отличается очень высокой для техники подобного уровня надежностью: за все время его эксплуатации было произведено 370 пусков, из них 44 - неудачные.

9. Единственный и главный недостаток “Протона” - это крайне токсичные компоненты топлива: несимметричный диметилгидразин (НДМГ), или как его еще называют "гептил" и азотный тетраоксид ("амил"). В местах падения первой ступени (это территории в районе города Джезказгана), происходит загрязнение окружающей среды, что требует проведения дорогостоящих операций по ее очистке.

Ситуация серьезно усугубилась в начале 2000-х, когда произошло подряд три аварии ракетоносителя. Это вызвало крайнее недовольство властей Казахстана, потребовавших от российской стороны больших компенсаций. С 2001-го года старые модификации ракетоносителя были заменены на модернизированный “Протон-М”. В нем стоит цифровая система управления, а также система стравливания не сгоревших остатков топлива в верхних слоях ионосферы.

Таким образом, удалось существенно снизить ущерб для окружающей среды. Кроме того, разработан, но пока еще остается на бумаге проект экологически безопасного ракетоносителя “Ангара”, который использует в качестве компонентов топлива керосин и кислород, и который должен постепенно заменить “Протон-М”. Кстати, комплекс ракетоносителя “Ангара”на “Байконуре” будет называться “Байтерек” (в переводе с казахского “Тополь”.)

10. Именно надежность ракеты в свое время привлекла американцев. В 90-х годах было создано совместное предприятие ILS, которое позиционировало ракету на американском рынке телекоммуникационных систем. Сегодня большинство американских спутников связи гражданского назначения запускаются “Протоном-М” с космодрома в казахстанской степи. Американский SES-3 (принадлежащий компании SES WORLD SKIES), который находится в головной части ракеты вместе с казахстанским “КазСатом-2” - один из множества запускаемых с “Байконура”.

11. Кроме российского и американского флагов, на ракете размещен казахстанский а также эмблема Республиканского центра космической связи - организации, которая сегодня владеет и управляет спутником.

12. 16 июля 2011-го года 5 часов 16 минут и 10 секунд утра. Кульминационный момент. К счастью, все проходит благополучно.

13. Через 3 месяца после запуска. Молодые специалисты - ведущий инженер отдела управления спутником Бекболот Азаев, а также его коллеги инженеры Римма Кожевникова и Асылбек Абдрахманов. Вот эти ребята и управляют “КазСатом-2”.

14. Акмолинская область. Небольшой, и до 2006-го года ничем не примечательный районный центр Акколь получил широкую известность 5 лет назад, когда здесь построили первый в стране ЦУП - центр управления полетами орбитальных спутников. Октябрь здесь холодный, ветреный и дождливый, однако именно сейчас наступает самая горячая пора для тех людей, которые должны придать спутнику “КазСат-2” статус полноценного и важного сегмента казахстанской телекоммуникационной инфраструктуры.

15. После потери первого спутника в 2008-м году в Аккольском центре космической связи была проведена серьезная модернизация. Она позволяет уже сейчас управлять сразу двумя аппаратами.

Бауржан Кудабаев, вице-президент Республиканского центра космической связи:

Было установлено специальное программное обеспечение, поставлено новое оборудование. Перед вами стойка командно-измерительной системы. Это поставка американской фирмы Vertex, как и было на “КазСат-1”, но уже новой модификации, улучшенная версия. Применены разработки компании “Российские космические системы”. Т.е. это все - разработки сегодняшнего дня. Новые программы, оборудование элементная база. Все это улучшает работу с нашим космическим аппаратом

16. Дархан Марал, начальник центра управления полетом на рабочем месте. В 2011-м в Центр пришли молодые специалисты, выпускники российских и казахстанских вузов. Их уже научили работать, и как утверждают в руководстве РЦКС, с кадровым пополнением проблем нет. В 2008-м ситуация была намного печальнее. После потери первого спутника, значительная часть высокообразованных людей покинула центр.

17. Октябрь 2011-го был еще одним кульминационным моментом в работе над казахстанским спутником. Завершились его летно-конструкторские испытания, и начались так называемые зачетные испытания. Т.е. это был как бы экзамен для производителя на функциональность спутника. Происходило все следующим образом. На “КазСат-2” подняли телевизионный сигнал.

Затем несколько групп специалистов отправились в разные регионы Казахстана и замеряли параметры этого сигнала, т.е. насколько корректно сигнал ретранслирует спутник. Замечаний не возникло, и в конце концов специальная комиссия приняла акт о передаче спутника казахстанской стороне. С этого момента эксплуатацией аппарата занимаются казахстанские специалисты.

18. До конца ноября 2011-го в космическом центре “Акколь” работала большая группа российских специалистов. Они представляли субподрядные организации по проекту “КазСат-2”. Это ведущие компании российской космической отрасли: Центр им. Хруничева, который разработал и построил спутник, конструкторское бюро “Марс”(оно специализируется в области навигации орбитальных спутников), а также корпорация “Российские космические системы”, разрабатывающая программное обеспечение.

Вся система делится на две составляющие. Это, собственно, сам спутник и наземная инфраструктура управления. По технологии сначала подрядчик должен продемонстрировать работоспособность системы - это монтаж оборудования, его отладка, демонстрация функциональных возможностей. После всех процедур - обучение казахстанских специалистов.

19. Центр космической связи в Акколе - это одно из немногих мест в нашей стране, где сложилась благоприятная электромагнитная обстановка. На многие десятки километров вокруг здесь отсутствуют источники излучения. Они могут создать помехи и помешать управлению спутником. 10 больших параболических антенн направлены в небо в одну единственную точку. Там на большом расстоянии от поверхности Земли - это более 36-ти тысяч километров висит небольшой рукотворный объект - казахстанский спутник связи “КазСат-2”.

Большинство современных спутников связи геостационарные. Т.е. их орбита построена таким образом, что как бы зависает над одной географической точкой, и вращение Земли практически не оказывает на эту стабильную позицию никакого влияния. Это позволяет с помощью бортового ретранслятора прокачивать большие объемы информации, уверенно принимать эту информацию в зоне покрытия на Земле.

20. Еще одна любопытная деталь. По международным правилам допустимое отклонение спутника от точки стояния может составлять максимум пол-градуса. Для специалистов ЦУПа -удержать аппарат в заданных параметрах - ювелирная работа, требующая высочайшей квалификации специалистов-баллистиков. В центре будет работать 69 человек, из них 36 - это технические специалисты.

21. Вот это и есть главный пульт управления. На стене большой монитор, куда стекается вся телеметрия, на полукруглом столе несколько компьютеров, телефоны. Вроде бы все очень просто…

23. Виктор Лефтер, президент Республиканского центра космической связи:
- Мы будем расширять казахстанскую флотилию до 3-х, 4-х, а возможно даже - до 5-ти cпутников. Т.е. чтобы была постоянна замена аппаратов, резерв был, и чтобы наши операторы не испытывали такой острой необходимости использовать изделия других государств. Чтобы мы были обеспечены своими резервами.”

24. В настоящее время резервирование управления спутником осуществляется из Москвы, где расположен космический центр им. Хруничева. Однако, Республиканский центр космической связи намерен резервировать полет c казахстанской территории. Для этого сейчас строится второй ЦУП. Он будет расположен в 30-ти километрах севернее Алматы.

25. В планах Национального космического агентства Казахстана предстоящий в 2013-м году запуск третьего спутника “КазСат-3”. Контракт на его разработку и производство был подписан в 2011-м году во Франции, на аэрокосмическом салоне в ле Бурже. Спутник для Казахстана строит НПО им.академика Решетнева, которое расположено в российском городе Красноярске.

26. Интерфейс оператора отдела управления. Так он выглядит сейчас.

На видео можно увидеть, как был запущен этот спутник.


Оригинал взят отсюда

Читайте наше сообщество также вконтакте, где огромный выбор видеосюжетов по тематике "как это сделано" и в фейсбуке.

Запуск спутника в космос ознаменовался новой эрой и стал прорывом в области техники и космонавтики. Необходимость создания спутника определилась ещё в начале двадцатого века. Однако с самого начала на пути запуска спутника в космическое пространство стояло множество проблем, над которыми трудились самые лучшие инженеры и учёные. Эти проблемы были связаны с необходимостью создания двигателей, способных работать в тяжелейших условиях и при этом, они должны быть необычайно мощными. Так же проблемы были связаны с правильным определением траектории движения спутника.

Итак, советские ученые решили поставленные задачи, и 4 октября 1957 года в СССР успешно был запущен искусственный спутник, за движением которого наблюдал весь мир. Это событие стало мировым прорывом и обозначило новый этап, как в науке в целом, так и во всем мире.

Прямая трансляция запуска Союз-Прогресс (миссия к МКС)

Задачи, решаемые спутником

Задачи, решаемые запуском спутника можно определить как следующие:

1. Изучение климата;

Всем известно, какое влияние климат оказывает на сельское хозяйство, на военную инфраструктуру. Благодаря спутникам можно предсказать появление разрушающих стихий, избежать большого количества жертв.

2. Изучение метеоритов;

В космическом пространстве находится огромное количество метеоритов, вес которых достигает нескольких тысяч тонн. Метеориты могут представлять опасность не только для спутников, космических кораблей, но и для людей. Если при пролете метеорита сила трения невелика, то несгоревшая часть способна достигнуть Земли. Диапазон скорости метеоритов достигает от 1220 м/сек до 61000 м/сек.

3. Применение телевизионного вещания;

В настоящее время роль телевидения велика. В 1962 году был запущен первый телевизионный транслятор, благодаря ему мир впервые увидел видеокадры через Атлантику в течение нескольких минут.

4. Система GPS.

Система GPS играет огромную роль почти в каждой сфере нашей жизни. GPS подразделяется на гражданскую и военную. Она представляет собой электромагнитные сигналы, излучаемые в радиоволновом участке спектра антенной, установленной на каждом из спутников. Состоит из 24 спутников, которые находятся на месте орбиты на высоте 20200 км. Время обращения вокруг Земли составляет 12 часов.

Телекоммуникационный спутник “Арабсат-5Б”

Запуск «Союз»

Запуск спутников и выход их на орбиту

Для начала важно обозначит траекторию полета спутника. На первый взгляд, кажется, что логичнее запустить ракету перпендикулярно (по кратчайшему расстоянию до цели), однако, такой вид запуска оказывается невыгодным, как с инженерной точки зрения, так и с экономической. На спутник, запущенный вертикально действуют силы притяжения Земли, которые значительно сносят её от назначенной траектории, и, сила тяги становится равной силе тяжести Земли.

Чтобы избежать падения спутника, сначала, его запускают вертикально, чтобы он смог преодолеть упругие слои атмосферы, такой полет продолжается на протяжении всего 20 км. Далее спутник с помощью автопилота наклоняется и в горизонтальном направлении движется к орбите.

Кроме того, задача инженеров состоит в том, чтобы рассчитать траекторию полета таким образом, чтобы скорость, затрачиваемая на преодоление атмосферных слоёв, а так же на затрату топлива составляли лишь несколько процентов от характеристической скорости.

Немаловажным является и то, в какую сторону запустить спутник. При запуске ракеты в сторону вращения Земли, происходит приращение скорости, которое зависит от местоположения запуска. Например, в экваторе оно является максимальным и составляет 403 м/с.

Орбиты спутников бывают круговыми и эллиптическими. Эллиптической орбита будет являться в том случае, если скорость ракеты будет выше окружной. Точка, находящаяся в ближайшем положении называется перигеем, а наиболее отдаленная апогеем.

Сам запуск ракеты со спутником производится в несколько ступеней. При прекращении работы двигателя первой ступени, угол наклона ракета-носителя составит 45 градусов, на высоте 58 км, затем производится её отделение. В работу включаются двигатели второй ступени, с возрастанием угла наклона. Далее, вторая ступени отделяется на высоте 225 км. Затем, ракета по инерции достигает высоты 480 км и оказывается в точке, находящейся на расстоянии 1125 км от старта. Затем начинает работать двигатели третьей ступени.

Возвращение спутника на землю

Возвращение спутника на Землю сопровождается некоторыми проблемами, связанными с торможением. Торможение может осуществляться двумя способами:

  1. Благодаря сопротивлению атмосферы. Скорость спутника, вошедшего в верхние слои атмосферы, будет уменьшаться, но из-за аэродинамической формы подскочит рикошетом обратно в космическое пространство. После этого, спутник уменьшит свою скорость и войдет глубже в атмосферу. Так повторится несколько раз. После снижения скорости, спутник будет осуществлять спуск с помощью выдвижных крыльев.
  2. Автоматический ракетный двигатель. Ракетный двигатель должен быть направлен в сторону противоположную движению искусственного спутника. Плюс данного способа заключается в том, что скорость торможения можно регулировать.

Заключение

Итак, спутники всего за полвека вошли в жизнь человека. Их участие помогает исследовать новые космические пространства. Спутник, как средство бесперебойной связи помогает сделать удобной повседневную жизнь людей. Прокладывающие путь в космические просторы, они помогают сделать нашу жизнь такой, какая она есть сейчас.