Ростелеком

Профиль крыла для планера. Справочник авиационных профилей. Муравей в профиль и в фас

Они определяются формой профиля, формой в плане и видом крыла спереди.

Профилем крыла называется форма (контур) сечения крыла, получаемая от пересечения крыла плоскостью, параллельной плоскости симметрии самолета. На рис.3.2 показаны формы профилей крыла.


Рис. 3.2 Формы профилей крыла

1 - симметричный; 2 - не симметричный; 3 - плосковыпуклый; 4 - двояковыпуклый; 5 - S-образный;6 -ламиниризированный; 7 - чечевицеобразный; 8 - ромбовидный; 9 - D видный

Крылья первых самолетов представляли собой тонкие изогнутые пластины.

В 1910 – 1912 гг. Н.Е. Жуковским был теоретически разработан вогнутый профиль крыла 4, обладающий большой несущей способностью.

В дальнейшем перешли к плосковыпуклым и двояковыпуклым профилям 2,3.

S-образные профили 5 обладают лучшими характеристиками устойчивости. Ламинаризированные профили 6 обладают пониженным сопротивлением при полетах на максимальной скорости.

Для сверхзвуковых самолетов были разработаны чечевицеобразные профили крыла 7, образованные пересечением дуг окружностей.

Для гиперзвуковых полетов применяются ромбовидные и клиновидные профили 8,9 , предложенные К.Э. Циолковским.

Основными характеристиками профиля крыла являются (Рис.3.3):

Относительная толщина;

Относительная кривизна;

Координата максимальной толщины.


Рис. 3.3 Геометрические характеристики профиля

Хордой b называется отрезок, соединяющий точку ребра атаки и точку ребра обтекания концевые точки профиля.

Относительная толщина – это отношение максимальной толщины профиля к его хорде , измеряемое в процентах от длины хорды:

.

Здесь: c max - максимальная толщина. Это расстояние между верхним и нижним скатами профиля

Относительная толщина профилей крыльев современных дозвуковых самолетов лежит в пределах 10 – 15%, а сверхзвуковых – в пределах 2,5 – 5%. Чем тоньше профиль, тем меньше сопротивление крыла. Но при таком профиле несущие свойства и прочностные характеристики крыла ухудшаются.

Координата максимальной толщины профиля . Измеряется в процентах от хорды, считая от носка хорды:

,

Для дозвуковых профилей равна 25 – 30%, для сверхзвуковых равна 50%. Эта координата показывает, где расположена точка перехода ламинарного течения пограничного слоя в турбулентный.

Относительная кривизна (вогнутость) профиля – это отношение стрелки прогиба средней линии профиля к его хорде, измеряемое в процентах:

.

Здесь: f max – максимальная кривизна (стрелка прогиба).

Стрелкой прогиба называется максимальное отклонение средней линии профиля от его хорды.

Средняя линия профиля – это линия, проходящая через середины отрезков, соединяющих точки с одинаковой координатой на верхнем и нижнем обводах профиля.

Относительная кривизна профилей крыльев современных самолетов колеблется в пределах от 0% до 2%.

Относительная толщина и относительная кривизна профилей крыла являются важными характеристиками, влияющими на подъемную силу крыла

Исходя из требований аэродинамики и из конструктивных соображений крыло набирают из профилей с разной относительной толщиной. В корневых сечениях крыла из соображений прочности ставят более толстые профили, а на концах крыла – более тонкие.

Для получения нужных характеристик устойчивости кривизну профилей увеличивают от корня к концам крыла. Такие крылья называются аэродинамически закрученными .

Хорды профилей, составляющих крыло, могут иметь разные углы по отношению к оси фюзеляжа, которые у корня крыла больше, а на конце – меньше. Такие крылья называются геометрически закрученными . Угол, образованный так называемой средней аэродинамической хордой крыла (САХ ) с осью фюзеляжа, называется углом установки крыла (Рис.3.3-1).

Рис.3.3-1 Угол установки крыла

Величина угла установки выбирается из условий наименьшего лобового сопротивления самолета при полете с максимальной скоростью и составляет примерно 0 – 3°.

Форма крыла в плане

Крыло в плане – это проекция крыла на горизонтальную плоскость.

Крылья современных самолетов по форме в плане могут быть.

Правильный подбор профиля для свободнолетающей авиамодели - важнейший фактор достижения хороших летных качеств крылатого аппарата. Исходя из многолетнего опыта работы кружка краевой станции юных техников, предлагаем для воспроизведения целый ряд испытанных и отлично зарекомендовавших себя сечений для спортивных планеров-парителей.

Вариант № 1 подходит для условий тихой безветренной погоды и для моделей площадью 32-34 дм2 при удлинении крыла 13-15. При силе ветра 3-5 м/с и удлинении крыла 11-13 рекомендуются профили № 2 и 3. Варианты № 4 и 5 специально предназначены для тренировочных аппаратов с малым удлинением или же для условий сильно порывистого ветра.

Для небольших планеров, имеющих несущую площадь 17-19 дм2 (школьного подкласса), хорошо подходят профили № 6-9. При этом вариант № 6 в основном применяется для учебно-тренировочных моделей, а остальные - для чисто спортивных. Стабилизаторы же всех планеров делаются по схемам №10-12.

АВИАМОДЕЛЬНЫЕ ПРОФИЛИ

Genese №16 Clark-Y

Genese №16 Этот профиль был разработан специально для применения на авиамоделях при обтекании с малыми числами Рей-нольдса. Испытан сотрудниками редакции журнала на ряде авиамоделей (в частности, на модели самолета «Ностромо-35»). Обладает хорошими срывными характеристиками.

Позволяет сохранить небольшое значение посадочной скорости (приемлемое для пилота квалификации ниже средней) даже при удельной нагрузке на крыло 75-100 г/дм2. В целом не чувствителен к искажению формы, но жесткая обшивка лобика крыла все же предпочтительна. Плоская нижняя поверхность облегчает сборку конструкции. Может быть рекомендован для применения на учебных моделях, копиях и планерах. Clark-Y

Без всякой натяжки можно назвать профилем всех времен и народов. Первые достоверные результаты продувки были получены в лаборатории LMAL-NACA в 1924 году. До сих пор считается одним из лучших для учебно-тренировочных моделей. При применении на планерах по совокупности данных почти не уступает современным ламинарным профилям. Не чувствителен к искажению формы при использовании мягкой обшивки. Плоская нижняя поверхность облегчает сборку конструкции. Может быть рекомендован для применения на учебных моделях, копиях и планерах.

Имеет следующие характеристики: Су mах = 1,373, Cx min= 0,0106, См0=0,08, (Су/Сх)mах=22,4. На диаграмме нанесены кривые: поляра Су= f(Cx) с отметками углов атаки, кривая Су= f(α), кривая СмА= f(Cy), кривая Су/ Сх = f(α), кривая Сy= (1/πλ)Cy2.

ГРАФИК ОСНОВНЫХ ХАРАКТЕРИСТИК ПРОФИЛЯ CLARK-Y

АВИАМОДЕЛЬНЫЕ ПРОФИЛИ
Е-385 и Е-387

Профили крыла авиамоделей. Е-385 и Е-387 рекомендуются для планеров парящего типа. Профиль Е-387 (кстати, он наиболее популярен) при чуть меньших значениях подъемной силы имеет явно лучшие характеристики в зоне нулевой подъемной силы. Значит, планер, крылья которого оборудованы данным профилем, окажется, способен на полет с высокой скоростью при сохранении весьма высоких парящих качеств.

Е-385 больше подходит для чистокровных парителей, где проблема потенциальной быстроходности модели не так важна, как коэффициент мощности крыла. Имейте в виду, что для Е-385 СМО=-0,168, а для Е-387 Смо=-0,081 (практически в два раза меньше). Это означает, что балансировочные потери во втором случае будут меньше (можно закладывать в проект планера горизонтальное оперение уменьшенной эффективности).

Также более низкий уровень окажется и у крутильных нагрузок (этот фактор весьма важен при создании легких крыльев высокого удлинения). У упомянутых профилей отличаются и углы нулевой подъемной силы. Для Е-385 α0=-6,64°, а для Е-387 α0=-1,17°. Нижней границей допустимых чисел Рейнольдса для обоих профилей можно принять величину 100 000.

Достаточная относительная толщина профилей обеспечивает возможность постройки легких крыльев большого удлинения с традиционной силовой схемой. Хотя Е-385 и Е-387 относятся к ламиниризированным, на практике оказалось, что крылья моделей могут иметь широкую зону с мягкой обшивкой. Конечно, при этом лобик крыла шириной примерно в треть хорды должен иметь жесткую обшивку.

Кроме того, обводы этой части крыла желательно воспроизвести с максимальной точностью. На сегодняшний день в мире создано множество планеров, снабженных упомянутыми профилями. И существенной разницы между вариантами с полной жесткой обшивкой крыла и с частично мягкой не отмечалось нигде. Поэтому, если перед вами стоит проблема жесточайшей экономии веса модели, смело проектируйте крыло с пленочной обшивкой задней части.

ПРОФИЛЬ ДЛЯ СТАБИЛИЗАТОРА
HS3, NACA 0009, G-795

Профили для стабилизаторов HS3. В последнее время профилировка стабилизаторов стала весьма «стилизованной». Тем не менее, работы по поиску оптимальных решений не прекращаются. Так, можно вспомнить дипломную работу М. Хамма из института аэродинамики при техническом университете Штутгарта. Будущий инженер на рубеже 90-х годов разработал серию симметричных профилей HS1, HS2 и HS3.

Продувки показали, что при практически одинаковых координатах профилей HS2 и HS3 последний имеет уменьшенное сопротивление в диапазоне реальных летных углов атаки (отличие профилей только в том, что носик HS3 очень острый, совершенно без радиуса). При симметричной профилировке стабилизатора классическим решением можно признать выбор NACA 0009, а при плосковыпуклой профиль типа Clare-Y 8% или тот же G-795. Подборку профилей подготовил

(Источник журнал Моделизм спорт и хобби)

АВИАМОДЕЛЬНЫЙ ПРОФИЛЬ ЕБ-380

Несмотря на то, что практически все применяемые на авиамоделях современные профили имеют более чем «высокое происхождение» (создаются они настоящими учеными-аэродинамиками с привлечением сложных специализированных компьютерных программ и, как правило, потом проходят ряд испытаний в особых малотурбулентных аэродинамических трубах), изредка бывают исключения из этого правила.

Примером может служить профиль, полученный чехом Томашем Бартовским путем «скрещивания» двух весьма популярных профилей профессора Эп-плера - Е-387 и Е-374. К сожалению, в статье, опубликованной в чешском «Моделярже» в 1980, году не упоминалось, по какой методике шел поиск «золотой середины».

Однако было ясно, что Томаша не устраивала явная кривизна Е-387 и связанная с этим невозможность его применения на больших скоростях (при выходе на малые значения коэффициента подъемной силы Су для Е-387 характерен значительный рост коэффициента сопротивления Сх), а также недостаточная относительная толщина Е-374, не позволяющая изготавливать жесткие крылья большей длины, и слабый достигаемый им максимальный Су (что, в общем, характерно для таких профилей).

Новый профиль, названный автором ЕБ-380, имеет весьма важную технологическую особенность. На большей части образующая его нижняя полудужка совершенно ровная, что значительно упрощает создание несущих плоскостей с подобной профилировкой. Интересна дальнейшая история ЕБ-380. Сначала этот профиль был использован Бартовским на крыле планера с частично жесткой обшивкой, обтянутом материалом - аналогом нашей длинноволокнистой микалентной бумаги.

Результаты испытаний оказались, по крайней мере, ниже среднего. Естественно, Томаш после этого отказался от своего детища и строил модели, используя такие профили, как Фх60-126, Е-178, Е-193 и другие. Через некоторое время он все же вернулся к ЕБ-380 и рискнул еще раз испытать его на планере. Правда, теперь крыло имело цельнобальзовую обшивку с лакированной, отшлифованной и полированной поверхностью. Результаты полетов превзошли все ожидания.

По мнению Томаша, новый профиль был намного лучше, чем все ранее используемые им на моделях, и обладал к тому же очень широким диапазоном режимов. ЕБ-380 предлагался автором как весьма подходящий для планеров класса ФЗБ (в условиях восьмидесятых годов!). Рекомендовалось также при изготовлении крыльев строго соблюдать точность теоретических обводов и технологий, обеспечивающих высокое качество и гладкость поверхности.

Насколько было ясно из статьи в «Моделярже», поляра ЕБ-380 носила лишь ознакомительный характер и являлась плодом чисто умозрительных размышлений автора. Интересно отметить, что приведенные в чешском журнале изображения профиля не соответствовали помещенной тут же таблице координат, хотя и предназначались для прямого «перекалывания» без промежуточных построений (даны натурные профили с хордой 160, 180, 205, 230 и 250 мм). На изображениях отсутствовало поджатие верхней задней части полудужки, четко проявляющееся при точном построении.

Судя по всему, оно было спрямлено либо самим автором, либо художником, выполнявшим рисунки. Поэтому здесь правомерно вести речь только о модифицированном ЕБ-380, который в дальнейшем мы будем именовать ЕБ-380м. Длительное время о профиле Бартовского не было ничего слышно. И вдруг совсем недавно появился целый ряд успешных разработок метательных радиопланеров, крылья которых снабжены ЕБ-380м.

Спортсмены довольны этим профилем, хвалят его характеристики и особо - универсальность. Он позволяет летать как в режиме чистого тихоходного парения, так и в скоростном, без потери аэродинамических свойств. На кроссовых планерах ЕБ-380 не «прижился» даже в свое время (сейчас там совершенно иные профили), зато на «металках», которые завоевывают все большую популярность во всем мире, он взял свое.

Причем именно в нёрекомендованном автором исполнении - на крыльях с частичной и полной мягкой обшивкой, да еще и на весьма малых числах Рейнольдса. Последнее, возможно, оправдано довольно острой «турбулизирующей» передней частью профиля и дополнительной турбулизацией воздуха за счет сравнительно шероховатой бумажной обшивки. Если вы занимаетесь созданием «металок» или легких планеров-парителей, может, имеет смысл попробовать применить именно ЕБ-380 или ЕБ-380м? Подумайте...

Рис. 1. Точные обводы профиля ЕБ-380. (Хорда равна 100 мм.) Вверху показан профиль ЕБ-380м, приведенный на страницах чешского журнала «Моделярж» в качестве точных шаблонов профиля ЕБ-380.


Сравнительный анализ профилей крыла для скоростных маневренных моделей

Юрий Арзуманян

(yuri _ la )

Данная статья является обобщением обсуждения этой на форуме rc-aviation. Речь там шла конкретно о моделях воздушного боя, и, в частности, такого типа, как на Рис. 1 ниже.

Рис. 1. Бойцовка SB-7AS от клуба Alisa Air

Я намеренно не упомянул это в заголовке статьи, поскольку примененный ниже подход применим не только к моделям воздушного боя. Более того, этот подход был впервые предложен еще на заре авиации одним из отцов-основателей современной аэродинамики нашим великим ученым Николаем Егоровичем Жуковским. С тех пор предложенный им метод так и называют методом потребных тяг Н.Е. Жуковского.

Чтобы не повторять то, что обсуждалось в форуме, замечу, что вопрос об использовании вместо относительного толстого симметричного профиля более тонкого и, в особенности, несимметричного профиля для бойцовок, возникает с определенной периодичностью. Не случайно говорят, что все новое – это хорошо забытое старое. Ведь к симметричному относительно толстому профилю ведущие бойцы пришли неспроста. За этим стоят годы проб, ошибок, нахождения компромиссов и накопления опыта.

Я не буду углубляться в тему воздушного боя, поскольку последний раз управлял кордовой бойцовкой еще в пионерском детстве, и не считаю себя в этом деле экспертом. Для этого лучше внимательно проштудировать соответствующие разделы форумов, поскольку там отмечаются настоящие спортсмены, а не просто любители. Скажу только, что основные аргументы в пользу перехода на более тонкий несимметричный, а то и вообще плоско-выпуклый профиль, обычно сводятся к следующим:

1) Более низкое лобовое сопротивление модели, отсюда более высокая достижимая скорость полета.

2) Время прямого полета в ходе боя в среднем больше времени полета в инверте, поэтому прямой полет более важен.

3) Меньший вес и стоимость изготовления модели.

Есть и другие предполагаемые достоинства, но они спорны, и упоминать я их не буду. А основным недостатком при этом считается ухудшение качества обратного пилотажа (в перевернутом полете).

Итак, давайте приступим к сравнению профилей. Казалось бы, ожидаемый результат анализа очевиден. Действительно, более тонкий профиль имеет меньшее лобовое сопротивление. Значит, скорость полета будет больше, и с этим не поспоришь! Но... давайте займемся расчетами и посмотрим насколько это справедливо.Для получения числовых результатов надо отталкиваться от конкретных характеристик. Поэтому примем следующие исходные данные для модели с фото.

Характеристики планера бойцовки на Рис. 1:

Размах крыла - 1000 мм

Площадь крыла – 20.8 кв. дм.

Взлетная масса модели - 475 грамм

Расчетная скорость полета - 32 м/с (это всего лишь некоторая опорная величина, дальше в расчетах скоростью будем варьировать)

Исходный профиль - симметричный 15% (NACA 0015 – близок к исходному)

Мотор - Eurgle RC Plane 1580kv D2810 Brushless Outrunner Back Mounting Motor (300W)

Батарея - 2200мА 3S 25С

Регулятор на 40А

Статика на стенде:

Винт - МА 8х5

Ток - 26А

Мощность - 270W

Тяга - 980 гр.

Для сравнения возьмем два профиля ЦАГИ. Первый – чисто плоско-выпуклый профиль ЦАГИ-719, относительная толщина примерно 10% . Второй профиль тоже ЦАГИ, только он со скругленной передней кромкой. Это ЦАГИ-831.

Наш анализ серьезно облегчается тем, что мы рассматриваем летающее крыло без выраженного фюзеляжа. Поэтому в общей величине аэродинамического сопротивления это можно учесть небольшим поправочным коэффициентом, но на СРАВНИТЕЛЬНЫЕ результаты это не сильно повлияет.

Чтобы провести соответствующие расчеты надо знать аэродинамические характеристики каждого профиля. Начнем с плоско-выпуклого.

Таблица 1. Геометрия профиля ЦАГИ-719.

Геометрия профиля

X

Y+

Y-

0.025

0.04

0.05

0.0538

0.0722

0.0908

0.0974

0.0962

0.0896

0.0785

0.0636

0.0453

0.024

Вот так он выглядит:


Рис. 2. Контур профиля ЦАГИ-719

А его характеристики в таблице ниже.

Таблица 2. Аэродинамические характеристики профиля ЦАГИ-719

?, град

Cy

Cx

k

0.036

0.0366

0.983607

0.17

0.0258

6.589147

0.316

0.0234

13.50427

0.458

0.0242

18.92562

0.0316

18.98734

0.746

0.0424

17.59434

0.876

0.0456

19.21053

1.004

0.0742

13.531

1.14

0.0926

12.31102

1.25

0.1162

10.75731

1.322

0.141

9.375887

1.33

0.1778

7.480315

1.324

0.2448

5.408497

1.19

0.314

3.789809

В расчетах можно пользоваться табличными данными. Только в этом случае придется промежуточные значения интерполировать, а это влечет за собой громоздкие вычисления и вообще не очень удобно. Чтобы этого избежать, я пользуюсь тем, что нас интересует ограниченная область углов атаки, где табличные данные легко аппроксимировать аналитической формулой. Я вывел такие аппроксимирующие формулы для Сх и Су:

Здесь? - угол атаки в градусах.

Смотрим, насколько удачна наша аппроксимация.


Рис. 3. Аппроксимация аэродинамических характеристик профиля ЦАГИ-719

Из графиков видно, что в зоне малых углов атаки приближение аналитическими формулами вполне удовлетворительное.

Таблица 3. Геометрия профиля ЦАГИ-831

Геометрия

X

Y+

Y-

0.025

0.025

0.025

0.057

0.005

0.05

0.07

0.001

0.089

0.106

0.11

0.105

0.095

0.082

0.066

0.046

0.026

Вот так он выглядит:


Рис. 4. Контур профиля ЦАГИ-831

Аэродинамические характеристики в таблице ниже.

Таблица 4. Аэродинамические характеристики профиля ЦАГИ-831

Аэродинамические характеристики

?, град

Cx

Cy

k

0.0140

0.0120

0.857

0.0154

0.1600

10.390

0.0184

0.3080

16.739

0.0236

0.4580

19.407

0.0346

0.6050

17.486

0.0468

0.7540

16.111

0.0612

0.9000

14.706

0.0814

1.0040

12.334

0.1016

1.1600

11.417

0.1242

1.2370

9.960

0.1552

1.2600

8.119

0.1980

1.3950

7.045

0.3204

1.0070

3.143

Для этого профиля выведены такие аппроксимирующие формулы для Сх и Су:

где


Рис. 5. Аппроксимация аэродинамических характеристик профиля ЦАГИ-831

Нам осталось привести характеристики симметричного профиля. Вот они:

Таблица 5. Геометрия профиля NACA -0015

Геометрия профиля

X

Y+

Y-

0.0125

0.02367

0.02367

0.025

0.03268

0.03268

0.05

0.04443

0.04443

0.075

0.0525

0.0525

0.05853

0.05853

0.15

0.06682

0.06682

0.07172

0.07172

0.25

0.07427

0.07427

0.07502

0.07502

0.07254

0.07254

0.06617

0.06617

0.05704

0.05704

0.0458

0.0458

0.03279

0.03279

0.0181

0.0181

0.95

0.01008

0.01008

0.00158

0.00158

Так выглядит симметричный профиль.


Рис. 6. Контур профиля NACA-0015

Таблица 6. Аэродинамические характеристики профиля NACA -0015

Аэродинамические характеристики профиля

?, град

Cy

Cx

k

0.0077

0.000

0.15

0.009

16.667

0.014

21.429

0.45

0.02

22.500

0.031

19.355

0.74

0.042

17.619

0.89

0.06

14.833

1.02

0.075

13.600

1.17

0.095

12.316

0.119

10.924

1.42

Так выглядят графики аэродинамических характеристик для этого профиля.


Рис. 7. Аппроксимация аэродинамических характеристик профиля NACA -0015

Теперь у нас есть все данные для проведения сравнительных расчетов. Рассмотрим прямолинейный установившийся горизонтальный полет с постоянной скоростью. Поскольку в таком полете подъемная сила уравновешивает вес модели, то для каждой скорости можно найти требуемый балансировочный угол атаки. Для этого мы зададимся некоторым диапазоном скоростей полета модели. Для каждой скорости полета вычислим лобовое сопротивление. Поскольку в полете с постоянной скоростью тяга уравновешивает лобовое сопротивление, то, имея угол атаки, мы это сопротивление вычислим, и получим потребную тягу для полета на этой скорости.

X – лобовое сопротивление

S – площадь крыла

V – скорость полета

– плотность воздуха

Последовательность расчетов следующая. Задаемся скоростью полета в интересующем нас диапазоне. Тогда из выражения для Y можно вычислить потребное значение коэффициента подъемной силы для установившегося полета на этой скорости.

Имея для каждого профиля аппроксимирующие формулы, мы по значению Cy вычислим потребное значение балансировочного угла атаки. Например, из этой формулы для NACA -0015.

получим

Подставив его в выражение для Cx,

получим величину лобового сопротивления, равного потребной тяге для данной скорости полета. Это простая арифметика и я не буду здесь приводить пример числового расчета, а сразу приведу результат в виде таблицы и графика потребных тяг для всех трех профилей.

Таблица 7. Зависимость потребной тяги от скорости полета

Потребная тяга, г

Скорость полета, м/с

Профиль крыла

V

ЦАГИ-831

ЦАГИ-719

NACA-0015

Из этой таблички видно, что для опорной скорости полета 32 м/с наименьшая потребная тяга у профиля ЦАГИ-831. Затем идет симметричный профиль NACA-0015, и хуже всего результаты у профиля ЦАГИ-719. Наглядно все это продемонстрировано на графике.


Рис. 8. График потребных тяг сравниваемых профилей в зависимости от скорости полета

В общем, предварительные результаты расчетов катастрофические для профиля ЦАГИ-719. Получается, что этот профиль хорошо летит в диапазоне скоростей полета 6-10 м/с. Такой полет происходит на околонулевом угле атаки при скоростях менее 40 км в час. Для полета на более высоких скоростях, в частности для заданной скорости 32 м/c (115 км/ч) необходимо лететь на ОТРИЦАТЕЛЬНОМ угле атаки около четырех градусов! Это чистая теория, на практике так модель лететь не будет. Ею будет практически невозможно управлять. Но вывод однозначен - этот профиль не для таких моделей.

Стоит заметить, что выбранные два профиля ЦАГИ существенно отличаются скруглением носка, и теперь видно насколько это влияет на летные характеристики крыла. Я намеренно взял два таких похожих профиля, у которых только носок разный, чтобы показать это влияние.

Также из таблицы можно видеть, что при одинаковой располагаемой тяге в зоне скоростей выше опорной разница в развиваемой скорости составит примерно процентов пятнадцать. То есть преимущество (в данном случае у ЦАГИ-831 по сравнению с NACA-0015) у несимметричного профиля перед симметричным есть, но небольшое! Для симметричного профиля NACA-0015 балансировочный угол на расчетной скорости 115 км в час положительный, примерно полградуса, потребная тяга на этом режиме примерно 270 грамм.

Я думаю, что если и дальше исследовать вопрос, то может быть стоит посмотреть более тонкие симметричные профили. Хотя если наложено ограничение на максимальную допустимую перегрузку из условий прочности, то время установившегося виража линейно растет с увеличением скорости полета. То есть более тонкие симметричные профили приведут к росту скорости, но снижению маневренности.

Дебаты на тему маневренность против скорости активно велись перед Второй Мировой Войной. Мессершмитты Me -109 против наших Чаек (И-153) и Ишачков (И-16). Скорость победила. Но в тех боях не было правил. Не было ограничения полетной зоны и т.п. Что лучше для боя радиоуправляемых моделей – не мне решать.

В заключение хотел бы указать то направление, в котором было бы целесообразно продолжить теоретические изыскания, после того, как вы определились с профилем крыла. Это оптимизация винтомоторной группы (ВМГ). Мощность мотора – обороты (kv) – диаметр и шаг винта. Но это уже совсем другая тема…

Здесь же я хочу выразить благодарность Геннадию Шабельскому (SURHAND ) и Тарасу Кушниренко (Kushnirenko ) за поддержку и практическую помощь в написании данной статьи.

Ламинарный профиль

Ламинарный профиль

профиль крыла, характеризующийся удалённым от носка положением точки перехода ламинарного течения в турбулентное при естественном обтекании, то есть без использования дополнительной энергии для затягивания перехода, как, например, при отсосе пограничного слоя, охлаждении поверхности (см. Ламинаризация пограничного слоя). Исследования в полёте состояния пограничного слоя на прямом крыле дозвукового самолёта (1938) показали наличие значительных участков ламинарного пограничного слоя. В СССР (И. В. Остославский, Г. П. Свищёв, К. К. Федяевский) и за рубежом были разработаны и применены на ряде самолётов Л. п., форма которых позволяла получать сдвинутое назад положение точки перехода ламинарного пограничного слоя в турбулентный и за счёт этого снижать , а следовательно, и полное аэродинамическое сопротивление самолёта. Для этого форма профиля должна обеспечивать на его поверхности в области ожидаемого ламинарного слоя ускоренное течение с возможно большим градиентом скорости для повышения устойчивости ламинарного течения к возмущениям. Геометрически это достигается смешением назад положения максимальной толщины и вогнутости профиля (см. Кривизна профиля), увеличением относительной толщины профиля и некоторым уменьшением радиуса кривизны носка. При этом с целью предотвращения срыва потока нельзя допускать резкого снижения скорости в хвостовой, диффузорной, части профиля, что приводит к ограничениям на геометрию профиля (недопустимо, например, смещение максимальной толщины и вогнутости за середину профиля, а также чрезмерное увеличение его толщины и вогнутости).
Фактором, ограничивающим возможности естественной ламинаризации пограничного слоя, является стреловидность крыла по передней кромке. При угле стреловидности больше 20-25(°) наблюдается значительное уменьшение области ламинарного течения. Участки с естественной ламинаризацией могут наблюдаться на различных элементах самолёта (носок фюзеляжа, горизонтальные и вертикальные оперения и т. д.). , проведённые при дозвуковых скоростях на самолётах с прямыми крыльями и крыльями с углом стреловидности менее 20(°), скомпонованными из Л. п., подтвердили наличие протяжённых ламинарных участков (до 30-50% хорды). При этом критические Рейнольдса числа, определенные по длине ламинарного участка, достигали Re* (≈) 10-12)*106. Проведённые в середине 80-х гг. в СССР (ЦАГИ) и за рубежом расчётные и экспериментальные исследования при больших числах Рейнольдса показали возможность получения протяжённых (вплоть до середины хорды) ламинарных участков при околозвуковом обтекании профилей с ускорением потока в местной сверхзвуков зоне. При этом полёта должно быть ограниченным, не допускающим возникновения интенсивных скачков уплотнения и заметного волнового сопротивления. Применение сверхкритических профилей с ускорением потока в местной сверхзвуковой зоне позволяет снизить сопротивление при повышенных дозвуковых скоростях полёта как за счёт естественной ламинаризации, так и за счёт малого, по сравнению с обычными профилями, волнового сопротивления.

Авиация: Энциклопедия. - М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .


Смотреть что такое "Ламинарный профиль" в других словарях:

    ламинарный профиль Энциклопедия «Авиация»

    ламинарный профиль - ламинарный профиль — профиль крыла, характеризующийся удалённым от носка положением точки перехода ламинарного течения в турбулентное при естественном обтекании, то есть без использования дополнительной энергии для затягивания перехода, как … Энциклопедия «Авиация»

    Bell P-63 «Kingcobra» - Bell P 63 «Kingcobra» Лётно технические характеристики Двигатель Авиационное артиллерийское оружие Авиационные средства поражения Классификаторы Факты Использование в иностранных ВВС Модификации Галерея … Военная энциклопедия

    HA 420 HondaJet Тип бизнес джет Разработчик Honda Aircraft Company … Википедия

    Проекция касательных напряжений, приложенных к обтекаемой поверхности тела, на направление его движения. С. т. есть составная часть сопротивления аэродинамического (СА) и обусловлено проявлением действия сил внутреннего трения (вязкости); при… … Энциклопедия техники Энциклопедия «Авиация»

    Уменьшение сопротивления шара с возрастанием скорости набегающего потока при Рейнольдса числах Re, близких к критическому значению Re.(Кризис сопротивления) 1,5*105. Явление было установлено в 1912 А. Г. Эйфелем, объяснено в 1914 Л. Прандтлем.… … Энциклопедия техники

za / wikipedia.org

Французская компания Onera совместно с итальянской Leonardo провела испытания гладкого крыла, оптимизированного для ламинарного потока. Как пишет Aviation Week , испытания состоялись в трансзвуковой аэродинамической трубе S1MA французской компании. В настоящее время специалисты анализируют данные, полученные во время испытаний, однако, согласно предварительным результатам, гладкое крыло показало несколько меньшее лобовое сопротивление по сравнению с обычным крылом самолета.

Объемы авиационных перевозок увеличиваются с каждым годом. Для того, чтобы удовлетворить спрос, снизив при этом стоимость авиаперевозок и не повлияв на доходы авиакомпаний, разработчики постоянно исследуют новые технологии улучшения самолетов. В частности, активные работы ведутся в области снижения потребления топлива самолетом в полете. Эту задачу можно решить несколькими способами. Например, снизить потребление топлива на несколько процентов можно улучшив конструкцию двигателей.

Еще одним способом уменьшить потребление топлива является снижение лобового сопротивления самолета. Этого можно добиться пересмотрев конструкцию самолетов, используя новые легкие материалы и покрытия. Согласно планам разработчиков, новое ламинарное крыло должно отличаться существенно меньшим лобовым сопротивлением по сравнению со стандартным крылом самолета. Такое крыло должно иметь гладкую поверхность и невысокий профиль, чтобы обеспечить ламинарный воздушный поток на как можно большей площади.


Ламинарное крыло в аэродинамической трубе (слева) и тепловизионное изображение ламинарного потока на его верхней плоскости

В аэродинамической трубе испытания проходили испытания левой консоли ламинарного крыла самолета длиной 5,2 метра. Продувочные испытания проводились на скорости воздушного потока 0,74 числа Маха (913,7 километра в час). Для изучения обтекающего крыло воздушного потока использовались высокоточные тепловизоры, замерявшие температуру на крыле в режиме реального времени. В результате выяснилось, что на верхней плоскости крыла площадь покрытия ламинарным потоком составила 70 процентов, а на нижней 30 процентов.

Для современного обычного самолетного крыла площадь покрытия ламинарным потоком в зависимости от конструкции составляет от 30 до 50 процентов для верхней плоскости и до 30 процентов - для нижней. На части крыла обязательно должно присутствовать турбулентное течение, повышающее его несущую способность. Для этого на современных самолетах на верхней плоскости крыла устанавливаются небольшие пластинки - завихрители потока, разрушающие ламинарный поток.

Тем не менее, считается, что в гражданской авиации, самолеты которых как правило не выполняют полетов на критических углах атаки, ламинарное удлиненное крыло может быть успешно использовано. При стабильном полете с без резких изменений углов атаки гладкое крыло может существенно снизить лобовое сопротивление, а значит потребление топлива в полете. Когда именно новое крыло может появиться на серийных самолетах, пока неизвестно.

Сегодня активными работами в области исследования гладкого крыла, оптимизированного для ламинарного обтекания, шведская компания Saab и британская GKN. Первая исследует композитное крыло, в котором передняя кромка и верхняя плоскость выполнены единой деталью, с пристыковкой остальных элементов и механизации с минимальными зазорами. В свою очередь GKN исследует обычное крыло, элементы которого плотнее обычного подогнаны друг к другу. Испытания обоих крыльев начнутся в текущем году.

Между тем, в феврале прошлого года GKN занялась исследованиями в области красок, которые позволят снизить лобовое сопротивление самолетов. Благодаря новым покрытиям разработчики рассчитывают снизить лобовое сопротивление на 25 процентов в крейсерском полете. Свои свойства новые краски должны будут сохранять на протяжении пяти лет, такой срок является стандартным требованием для внешних покрытий самолетов.

При нанесении на корпус самолета новые краски должны будут скрывать дефекты поверхности, обеспечивая тем самым ламинарное обтекание воздухом аэродинамических поверхностей, в первую очередь передних кромок, нередко имеющих неоднородную поверхность.

Василий Сычёв