С миру по нитке

Скалярное и векторное управление асинхронными двигателями. Технические отличия векторных и скалярных преобразователей

В настоящее время, управление скоростью двигателей переменного тока с помощью преобразователей частоты широко применяется практически во всех отраслях промышленности.

На практике, применяются системы регулирования скорости трехфазных двигателей переменного тока на основе двух разных принципов управления:
2. Векторное управление.

Методы регулирования, используемые в преобразователях частоты для управления двигателями переменного тока

В настоящее время, управление скоростью двигателей переменного тока с помощью преобразователей частоты широко применяется практически во всех отраслях промышленности. Это, прежде всего, связано с большими достижениями в области силовой электроники и микропроцессорной техники, на основе которых были разработаны частотные преобразователи. С другой стороны, унификация производства преобразователей частоты производителями, позволила достаточно сильно повлиять на их стоимость и сделала их окупаемыми в достаточно короткие промежутки времени. Экономия энергоресурсов при применении преобразователей для управления асинхронными двигателями в некоторых случаях может достигать 40% и более.
На практике, применяются системы регулирования скорости трехфазных двигателей переменного тока на основе двух разных принципов управления:
1. U/f- регулирование (вольт-частотное или скалярное управление);
2. Векторное управление.

U/f- регулирование скорости асинхронного электропривода

Скалярное управление или U/f-регулирование асинхронным двигателем - это изменение скорости двигателя путем воздействия на частоту напряжения на статоре при одновременном изменении модуля этого напряжения. При U/f-регулировании частота и напряжение выступают как два управляющих воздействия, которые обычно регулируются совместно. При этом частота принимается за независимое воздействие, а значение напряжения при данной частоте определяется исходя из того, как должен изменяться вид механических характеристик привода при изменении частоты, т.е., из того, как должен меняться в зависимости от частоты критический момент. Для реализации такого закона регулирования необходимо обеспечить постоянство соотношения U/f=const, где U-напряжение на статоре, а f-частота напряжения статора.
При постоянстве перегрузочной способности номинальные коэффициент мощности и к.п.д. двигателя на всем диапазоне регулирования частоты вращения практически не изменяются.
К законам U/f-регулирования можно отнести законы, связывающие величины и частоты питающего двигатель напряжения (U/f=const, U/f2=const и другие). Их достоинством является возможность одновременного управления группой электродвигателей. Скалярное управление используется для большинства практических случаев применения частотного электропривода с диапазоном регулирования частоты вращения двигателя без использования датчика обратной связи до 1:40. Алгоритмы скалярного управления не позволяют реализовать контроль и управление вращающим моментом электродвигателя, а также режим позиционирования. Наиболее эффективная область применения данного способа управления: вентиляторы, насосы, конвейеры и т.д.

Векторное управление

Векторное управление – это метод управления синхронными и асинхронными двигателями, не только формирующий гармонические токи и напряжения фаз (скалярное управление), но и обеспечивающий управление магнитным потоком двигателя. В основе векторного управления лежит представление о напряжениях, токах, потокосцеплениях, как о пространственных векторах.
Основные принципы были разработаны в 70-х годах 20 века. В результате фундаментальных теоретических исследований и успехов в области силовой полупроводниковой электроники и микропроцессорных систем, на сегодняшний день, разработаны электроприводы с векторным управлением, которые серийно выпускаются производителями приводной техники всего мира.
При векторном управлении в асинхронном электроприводе в переходных процессах имеется возможность поддерживать постоянство потокосцепления ротора, в отличие от скалярного регулирования, где потокосцепление ротора в переходных процессах меняется при изменении токов статора и ротора, что приводит к снижению темпа изменения электромагнитного момента. В приводе с векторным управлением, где потокосцепление ротора можно поддерживать постоянным, электромагнитный момент изменяется так быстро, как быстро изменяется составляющая тока статора (аналогия с изменением момента при изменении тока якоря в машине постоянного тока).
При векторном управлении в звене управления подразумевается наличие математической модели регулируемого электропривода. Режимы векторного управления можно проклассифицировать следующим образом:
1. По точности математической модели электродвигателя, используемой в звене управления:
. Использование математической модели без дополнительных уточняющих измерений устройством управления параметров электродвигателя (используются лишь типовые данные двигателя, введенные пользователем);
Использование математической модели с дополнительными уточняющими измерениями устройством управления параметров электродвигателя, т.е. активных и реактивных сопротивлений статора/ротора, напряжения и тока двигателя.
2. По наличию или отсутствию обратной связи по скорости (датчика скорости) векторное управление можно разделить на:
Управление двигателем без обратной связи по скорости – при этом устройством управления используются данные математической модели двигателя и значения, полученные при измерении тока статора и/или ротора;
Управление двигателем с обратной связью по скорости – при этом устройством используется не только значения, полученные при измерении тока статора и/или ротора электродвигателя (как в предыдущем случае), но и данные о скорости (положении) ротора от датчика, что в некоторых задачах управления позволяет повысить точность отработки электроприводом задания скорости (положения) .

К основным законам векторного управления можно отнести следующие:
а. Закон обеспечивающий постоянство магнитного потокосцепления статора ψ1 (соответствующее постоянству Евнеш /f).
б. Закон, обеспечивающий постоянство магнитного потокосцепления воздушного зазора ψ0 (постоянство Е/f);
в. Закон, обеспечивающий постоянство магнитного потокосцепления ротора ψ2 (постоянство Евнут/f).
Закон поддержания постоянства потокосцепления статора реализуется при поддержании постоянного отношения ЭДС статора к угловой частоте поля. Основной недостаток такого закона – пониженная перегрузочная способность двигателя при работе на высоких частотах. Обусловлено это увеличением индуктивного сопротивления статора и, следовательно, снижением потокосцепления в воздушном зазоре между статором и ротором при увеличении нагрузки.
Поддержание постоянства главного потока повышает перегрузочную способность двигателя, но усложняет аппаратную реализацию системы управления и требует либо изменений конструкции машины, либо наличия специальных датчиков.
При поддержании постоянного потокосцепления ротора, момент двигателя не имеет максимума, однако при увеличении нагрузки увеличивается главный магнитный поток, приводящий к насыщению магнитных цепей и, следовательно, к невозможности поддержания постоянства потокосцепления ротора.

Сравнительная оценка законов регулирования скорости асинхронным электроприводом изменением частоты напряжения на статоре

На рис.1 приведены результаты теоретических исследований энергетических показателей асинхронного двигателя мощностью Рн=18,5 кВт при различных законах частотного управления, которые проводились в работе В.С. Петрушина и к.т.н. А.А. Танькова «Энергетические показатели асинхронного двигателя в частотном электроприводе при различных законах управления». Там же даны результаты эксперимента, проведенного при испытании этого двигателя (закон частотного управления U/f = const). Двигатель работал на нагрузку с постоянным моментом 30,5 Нм в диапазоне скоростей 500 - 2930 об/мин.
Сопоставив полученные зависимости можно сделать вывод, что в зоне небольших скоростей при использовании законов управления второй группы КПД больше на 7-21%, а коэффициент мощности меньше на 3-7%. С увеличением скорости различия снижаются.

Рис.1. Изменение КПД (а) и cosφ (б) в диапазоне регулирования: 1 - экспериментальные зависимости; расчетные зависимости при разных законах управления: 2 - U/f = const, 3 - Евнеш /f = const, 4 - Е/f= const, 5 - Евнут /f= const.
Таким образом, законы векторного управления обеспечивают не только лучшее управление электроприводом в статических и динамических режимах, но и повышение КПД двигателя и, соответственно, всего привода. Однако все законы с поддержанием постоянства потокосцепления имеют свои определенные недостатки.
Общим недостатком законов с поддержанием постоянства потокосцепления являются: низкая надежность, обусловленная наличием датчиков, встраиваемых в двигатель, и потери в стали при работе двигателя с нагрузочным моментом меньше номинального. Эти потери вызваны необходимостью поддержания постоянного номинального потокосцепления в различных режимах работы.
Существенно повысить КПД двигателя можно путем регулирования магнитного потока статора (ротора) в зависимости от величины нагрузочного момента (скольжения). Недостатками такого управления являются низкие динамические характеристики привода, обусловленные большой величиной постоянной времени ротора, из-за чего магнитный поток машины восстанавливается с некоторой задержкой и сложность технической реализации системы управления.
На практике группа законов с постоянством магнитного потока получила распространение для динамичных электроприводов, работающих с постоянным моментом сопротивления на валу и с частыми ударными приложениями нагрузки. В то время как группа законов с регулированием магнитного потока в функции нагрузки на валу применяется для низкодинамичных электроприводов и для приводов с “вентиляторной” нагрузкой.

Векторное управление (ВУ) основано на том, что контролируется не только величина (модуль) управляемой координаты, но и ее пространс-твенное положение (вектор) относительно выбранных осей координат.

Рис. 8.28.Схема частотного ЭП на основе АИТ (а) и зависимостьтока статора от частоты тока в роторе (б)

Для реализации ВУ осуществляется контроль мгновенных величин напряжения, тока и потокосцепления. Путем математических преоб-разований асинхронный двигательАД, характеризуемый большим количеством нелинейных перекрестных связей, можно представить линейной моделью с двумя каналами управления –- моментом и потоком. Подобное удобство управления требует многократных преобразований координат ЭП, что не является препятствием, учитывая современный уровень развития МП техники.

Для понимания сущности ВУ воспользуемся принципиальной схемой двухфазной двухполюсной обобщенной машины (рис. 8.29), к которой может быть приведена симметричная машина, имеющая m-фазную обмотку статора и я-фазную обмотку ротора.

Рис. 8.29. Принципиальная схема двухполюсной двухфазной обобщенной машины: 1 –- статор; 2 –- ротор

Допустим, что система координат вращается в пространстве с произвольными действительнаядействительной,и- мнимой осями, уравнения будут иметь следующий вид:

, (8.27)

где u S , Щ,i S , i 2 ,ψ S , ψ 2 \j7-s>V2 -– соответственно векторы напряжений, токов и потокосцеплений статора 1 и ротора 2; j –- обозначение мнимой оси; Z n - – число пар полюсов; L m –-взаимная индуктивность между обмотками статора и ротора; / 2 - комплексно-со­пряженный вектор i-i; 1т- мнимая часть комплексной перемен­ной;ωю к –- угловая скорость ротора. Потокосцепления равны

, (8.29)

где L s (L sa +L m) и L 2 (L 2 <, +L m) – индуктивности фазных обмоток соответст-венно статора и ротора.

Рис. 8.30.Схема частотного ЭП на основе АИТ (а) и зависимостьтока статора от частоты тока в роторе (б)

Уравнения (8.27) можно записать, используя проекции обобщенных векторов на оси координат и, v, т.е. в скалярной форме:

В зависимости от используемых переменных состояния АД уравне-ния момента могут иметь различную форму. Кроме приведенного урав-нения (8.28), применяют следующие выражения электромагнитного момента:

Уравнения обобщенной машины для системы координат uv(8.27) могут быть записаны в любой системе координат. Выбор координатных осей зависит от типа машины (синхронная, асинхронная) и целей иссле-дования. Применение нашли следующие системы координат: непод-вижная система координат ар (©к = 0); синхронная система координат АУ (сок = соо) и система координатdq,вращающаяся вместе с ротором (со к = со). Взаимное расположение век-торов переменного АД приведено на рис. 8.30.



Переход от уравнений обобщенной машины (8.27), (8.28) к урав-нениям реального трехфазного АД осуществляется с помощью урав-нений координатных преобразованийе.9 М - угол момента, q> - угол между векторами тока и напряжения). О, = в м + ф - угол вектора напряжения (XY); 6« = 9„ + 8 V - угол вектора тока. Формулы координатных преобра-зований получены при условии постоянства мощности обеих машин. Они могут быть получены для любых переменных, записанных в любых осях.

Преобразования реальной машины к обобщенной называются пря-мыми, а преобразования обобщенной машины к реальной – -обратными. Например, формулы прямого преобразования фазных напря-жений ста-тора u sa , Щь, u sc к уравнениям и т, и$ в осях ар векторной диаграммы имеют вид:

Для рассмотрения векторного управления выбирается система координат XY, вращающаяся в пространстве со скоростью поля, т.е. о) к = соо, за последнюю принимается скорость вектора потокосцепления ротора. \j/2- Скорости вращения векторов напряжения, тока и потокосцепления одина­ковы лишь в установившихся режимах, а в переходных процессах они различны. Принцип векторного управления заключается в том, что

Рис. 8.30. Взаимное расположение векторов переменного АДВекторная диаграмма: % = 8 2 + в г - угол потока.

Формулы обратного преобразования

Usb =(~Usa+А/ЗU45)/ 2, U sc =(-М ю -л/ЗUф)/ 2. (8.33)

вектор переменной (тока, напряжения и т.д.) располагают в пространст-ве определенным образом. Наиболее эффективно расположить вектор потокосцепления vj7 2 вдоль вещественной оси Xсинхронной системы коор-динат, вращающейся со скоростью поля тогда . При этом уравнения АД с короткозамкнутым ротором имеют вид

0= -ω 2 + R 2 K 2 i sy ,

M э = 3/2 Z II K 2 ψ 2 i sy . (8.34)

где К 2 = L s - Кг L m ; Кг = Ь т /Ьг, сог = соо - со - частота скольжения или частота тока ротора.Анализируя уравнения (8.34), можно заметить их некоторое сходствос уравнениями ДПТ: момент в (8.34) пропорционален потоко-сцеплению ротора и составляющей вектора тока статора i sy , а потоко-сцепление пропорционально составляющей i sx /и. Это дает возможность, подобно ДПТ, раздельно управлять потоком и моментом, т.е. принцип ВУ приближает АД с его синусоидальными переменными к ДПТ. ВУ позволяет использовать при синтезе методы подчиненного регули-рования, широко распространенные в ЭПх постоянного тока. Различие (не в пользу ВУ) состоит в том, что независимое управление потоком, моментом и скоростью осуществляется не реальными переменными двигателя, а преобразованными к иной системе координат.

2. При частоте вращения 810 мин -1:

Функциональная схема векторного управления АД рис. 8.31: з –- задание; У –- управление; ОС –- обратная связь по скорости; с –- скорость; / I –- ток; х, у – -принадлежность переменных к синхронной системе координат; αа, β р–- принадлежность переменных к неподвижной системе координат; ф – потокосцепление; а, Ьb,с – индексы фаз.

Рис. 8.31.Функциональная схема векторного управления АД

Схема выполнена на основе принципа подчиненного регулирования и содержит три контура:

1) скорости (внешний); содержит датчик скорости BR и регулятор скорости вращения (момента) AR;

2) потокосцепления (магнитного потока) с регулятором потока Av|/Uψ и каналом ОС, имеющим выходную величину щ;

3) активной^и реактивной 4е составляющей вектора тока статора с регу-ляторами АА2 и АА1.

Сигнал ОС по току статора осуществляется датчиком тока UA, который измеряет фазные токи двигателя в двух фазах, например А и В, и вырабатывает сигналы u ia и ы,*. Для преобразования этих сигналов к неподвижной системе координат служит функциональный преобразователь U1, работающий в соответст­вии с формулами (8.32) прямых координатных преобразований cosф = U фо /U ф, которые в преобразователе А2 позволяют перейти от непод-вижных координат а р αβк координатам XYпо noследующим формулам:

u iβ =1/√3 (u iα +u ib).

Измерение потокосцепления может производиться с помощью различных устройств, например измерительной обмоткой укладываемой в теже пазы, что и силовая обмотка. Наибольшее распространение полу-чили датчики Холла, помещаемые в воздушный зазор двигателя. Сигна-лы датчика Uy преобразуются в функциональном преобразователе U2 по формулам (8.32) в сиг­налы и фа и Ыфр неподвижной системы координат. Полу-ченные величины необходимо преобразовать к системе координат XY вращающейся в пространстве со скоростью поля двигателя.

С этой целью в пореоброазователе D выделяется модуль потокосцеп-ления ротора

в виде соответствующего сигнала и ф

Сигналы напряжения и фа, « фр, Uix , u iy пропорциональны соответствующим физичес-ким величинам.

На вход регулятора потокосцепления UψАу подается разность сиг-налов задания потокосцепления м зф и ОС м ф, т.е. «у.Ф = "з.ф - м Ф, а на выходе Ау формируется сигнал задания тока статора по оси X, т.е. u 3 ix . Разность сигналов u 3 ix - Uix, проходя че­рез регулятор тока АА1, превращается в сигнал и* ы.Аналогичные преобразования имеют место в канале управления по оси Y, заза исключением того, что здесь установлен регулятор скорости (момента) AR, выходной сигнал которого делится на сигнал модуля потокосцепления Uψм ф для получения сигнала задания тока и по оси Y. На выходе регулятора АА2 составляющей тока статора по оси Г вырабатывается сигнал и! у, который вместе с сигналом и,* подается на входы Бблока А1, функционируетющего в соответствии с первыми двумя уравнениями (8.34). На выходе блока А1 получаем пре-образованные сигналыи х и щ, в которых отсутствует взаимное влияние кон-туров регулирования составляющих токов по осям XylY. Управляющие сигналы и х и и у, записанные во вращающейся системе координат XY, в координатном преобразователе A3 превращаются в сигналы управления ПЧ в неподвижной системе координат аВ αβпо уравнениям

U ix = u iα cosφ + u iβ sinφ,;

U yα = u x cosφ - u y sinφ,

U yβ = u x cosφ - u y sinφ. (8.36)

Для управления силовыми ключами ПЧ в трехфазной системе координат необходимо с помощью АЧ получить сигналы иу а U Уа, U У b иуь, U У c му с в соответствии с формулами обратного преобразования (8.33):

Благодаря координатным преобразованиям в системе векторного управления ЧЭП выделяют два канала регулирования: потокосцепления (магнитного потока) и скорости вращения (момента). В этом смысле система векторного управления аналогична ЭП постоянного тока с двухзонным регулированием скорости.

Для многократного преобразования координат ЭП в соответствии с приведенными выше формулами служат специализированные микро контроллеры класса DSP, работающие в режиме реального времени. Это позволяет получить глубокорегулируемые ЭП с высоким быстродейст-вием, используя асинхронный короткозамкнутый двигатель.

Существует множество структурных решений векторного управле-ния. Функциональная схема ВУ АД рис. 8.31 относится к классу прямого ВУ, при котором непосредственно измеряется по-токосцепление (магнит-ный поток). При косвенном ВУ измеряют положение ротора АД и электрические параметры (ток, напряжение). Такие системы получили большое распространение по двум причинам:

1) измерение потока трудоемко;

2) датчик положения необходим во многих промышленных ЭП (например,позиционный ЭП станков с ЧПУ и автоматиче­ских манипуляторов).

Если нет необходимости измерять положение ротора, применяют так называемое «бездатчиковое» ВУ (датчик положения ротора отсутст-вует),что требует более сложных вычислительных процедур.

Рис. 8.32.Схема подключения комплектного ЭП.

ЭП с ВУ обеспечивает широкий диапазон регулирования скорости (до 10 000) и во многих случаях заменяет широкорегулируемый ЭП с коллекторными ДПТ.

Схема комплектного ЭП рис. 8.32 изготавливаемого многими предприятями содержит: клеммы силовые: R, S, T (LI, L2, L3) –- клеммы питания; U, V, W (Tl, T2, ТЗ) –- выход преобразователя частоты; PD, Р –- подключение дросселя в промежуточном звене постоянного тока; Р, RB–- внешний тормозной резистор; Р, N –- внешний модуль торможения; G–- защитное заземление.

Клеммы управления: L –- клемма «общий» для аналоговых входов и выходов; Н –- питание потенциометра задания частоты; О –- клемма установки выходной частоты напряжением; 01, 02 –- дополнительная клемма установки выходной частоты соответственно током и напряже-нием; AM –- импульсный выход (напряжение); AMI –- аналоговый выход (ток); Р24 –- клемма питания; СМ1, ПС, 12С, AL0 –- клемма «общий»; PLC –- общая клемма для внешнего источника питания; FW–- прямое вращение; 1, 2, 3, 4, 5 –- программируемые дискретные входы; ПА –- клемма программируемого выхода 11; 12А –- клемма программируемого выхода 12; AL1, AL2 –- реле сигнализации; ТН –- вход термистора.

Клеммы управления: L - клемма «общий» для аналоговых входов и выходов; Н - питание потенциометра задания частоты; О - клемма установки выходной частоты напряжением; 01, 02 - дополнительная клемма установки выходной частоты соответст­венно током и напряжением; AM - импульсный выход (напря­жение); AMI - аналоговый выход (ток); Р24 - клемма питания; СМ1, ПС, 12С, AL0 - клемма «общий»; PLC - общая клемма для внешнего источника питания; FW - прямое вращение; 1, 2, 3, 4, 5 - программируемые дискретные входы; ПА - клемма программируемого выхода 11; 12А - клемма программируемого выхода 12; AL1, AL2 - реле сигнализации; ТН - вход термистора.

Контрольные вопросы

1. Покажите вращающееся магнитное поле при симметричном пи­тании при числе фаз, отличном от трех, например при т = 2, т = 6.

2. Каковы негативные последствия регулирования скорости напря­жением в цепи статора при длительном режиме работы?

3. Для каких механизмов предпочтительно регулирование скорости изменением напряжения?

4. По какой причине частотное регулирование скорости АД является наиболее экономичным?

5. Должно ли регулироваться напряжение при регулировании час­тоты и почему?

6. Какие ограничения имеются при регулировании частоты АД сверх- номинального значения?

7. Какие типы преобразователей частоты для питания АД вы знаете? Приведите формы напряжения на двигателе.

8. Какие способы коммутации тиристоров вы знаете?

9. Какими способами осуществляется регулирование напряжения статических преобразователей?

10. В чем существенное различие инверторов тока и напряжения?

11. Возможно ли рекуперативное торможение в системе частотного ЭП? Что для этого нужно в системе АИН-АД и системе НПЧ-АД?

12. Возможно ли получение частоты питания АД выше частоты сети в системе НПЧ-АД?

13. Какие комплектные частотные ЭП вы знаете?

14. Каково назначение конденсатора в звене постоянного тока в преобразователе частоты на основе автономного инвертора напряжения при работе на АД?

15. Сравните значение коэффициента мощности для частотного ЭП с АД при питании от автономного инвертора напряжения и для АД при питании от сети (при одинаковых значениях частоты и нагрузки).

16. Какие системы координат применяются при векторном управ-лении?

17. Для чего при векторном управлении необходимо преобразование переменных из одной системы координат в другую?

18. Возможно ли векторное управление без датчиков магнитного по­тока АД?

19. Нарисуйте схему системы тиристорный регулятор напряжения – -асинхронный электродвигатель (система ТРН- – АД).

20. Как будут изменяться механические характеристики АД при изменении угла управления ТРН?

21. В каких пределах может изменяться момент сопротивления на валу электродвигателя в системе ТРН- – АД? Нарисуйте примерную об-ласть его допустимых значений на графиках механических характерис-тик.

22. Нарисуйте схему включения дополнительного резистора в роторную цепь АД при импульсном регулировании.

23. Каким образом изменяются потери энергии в АД с импульсным регулированием добавочного резистора при регулировании скорости АД?

24. Нарисуйте примерный вид механических характеристик АД с импульсным регулированием добавочного резистора при разных значе-ниях скважности коммутации тиристоров.

25. Объясните принцип действия асинхронного вентильного каскада (АВК).

26. Покажите на графике, как будут изменяться механические харак-теристики АВК при изменении угла опережения инвертора.

27. Каким образом должно изменяться напряжение на статоре АД при изменении частоты в случае разных законов изменения момента сопротивления от скорости?

28. Покажите примерный вид механических характеристик при частотном регулировании скорости в случае, если момент сопро-тивления не зависит от скорости.

29. Назовите, какие типы ТПЧ применяются при частотном регули-ровании скорости АД. В случае какого ТПЧ возможно регулирование скорости только в области ее малых значений.

30. В чем заключается смысл «векторного управления» АД?


33.Трехфазный 4-полюсный АД, обмотка статора которого соединена в «звезду», имеет следующие номинальные данные: Р 2 =11,2 кВт, п= 1500 мин -1 , U=380 В,f=50 Гц. Заданы параметры двигателя:r=0,66 Ом,; r 2 ’ = 0,38 Ом, х= 1,14 Ом, х" 2= 1,71 Ом, х m = 33,2 Ом. Двигатель регулируется одновременным изменением напряжения и частоты. Отношение напряжения к частоте поддерживается постоянным и равным отношениюих номинальных значений.

34.Рассчитайте максимальный момент М max и соответствующую ему; скорость w m ах для частот 50 и 30 Гц.

35.Повторите п. 1, пренебрегая сопротивлением статора (r = 0).

Скалярное управление (частотное) - метод управления бесщеточным переменного тока, который заключается в том, чтобы поддерживать постоянным отношение напряжение/частота (В/Гц) во всем рабочем диапазоне скоростей, при этом контролируется только величина и частота питающего напряжения.

Отношение В/Гц вычисляется на основе номинальных значений ( и частоты) контролируемого электродвигателя переменного тока. Поддерживая постоянным значение отношения В/Гц мы можем поддерживать относительно постоянным магнитный поток в зазоре двигателя. Если отношение В/Гц увеличивается тогда электродвигатель становится перевозбужденным и наоборот если отношение уменьшается двигатель находится в недовозбужденном состоянии.


Изменение напряжения питания электродвигателя при скалярном управлении

На низких оборотах необходимо компенсировать падение напряжения на сопротивлении статора, поэтому отношение В/Гц на низких оборотах устанавливают выше чем номинальное значение. Скалярный метод управления наиболее широко используется для управления асинхронными электродвигателями.

В применении к асинхронным двигателям

При скалярном методе управления, скорость контролируется установкой величины напряжения и частоты статора, таким образом, чтобы магнитное поле в зазоре поддерживалось на нужной величине. Для поддержания постоянного магнитного поля в зазоре, отношение В/Гц должно быть постоянным на разных скоростях.


При увеличении скорости напряжение питания статора так же должно пропорционально увеличиваться. Однако синхронная частота асинхронного двигателя не равна частоте вращения вала, а зависит от нагрузки. Таким образом система контроля со скалярным управлением без обратной связи не может точно контролировать скорость при наличии нагрузки. Для решения этой задачи в систему может быть добавлена обратная связь по скорости, а следовательно и компенсация скольжения .


Недостатки скалярного управления

    Метод скалярного управления относительно прост в реализации, но обладает несколькими существенными недостатками:
  • во-первых, если не установлен датчик скорости нельзя управлять скоростью вращения вала , так как она зависит от нагрузки (наличие датчика скорости решает эту проблему), а вслучае с при изменении нагрузки - можно совсем потерять управление;
  • во-вторых, нельзя управлять . Конечно, эту задачу можно решить с помощью датчика момента, но стоимость его установки очень высока, и будет скорее всего выше самого электропривода. При этом управление моментом будет очень инерционным;
  • также нельзя управлять одновременно моментом и скоростью.

Скалярное управление достаточно для большинства задач в которых применяется электропривод с диапазоном регулирования частоты вращения двигателя до 1:10.

Когда требуется максимальное быстродействие, возможность регулирования в широком диапазоне скоростей и возможность управления моментом электродвигателя используется .

Векторное управление

Векторное управление является методом управления синхронными и асинхронными двигателями , не только формирующим гармонические токи (напряжения) фаз (скалярное управление), но и обеспечивающим управление магнитным потоком ротора. Первые реализации принципа векторного управления и алгоритмы повышенной точности нуждаются в применении датчиков положения (скорости) ротора.

В общем случае под "векторным управлением " понимается взаимодействие управляющего устройства с так называемым "пространственным вектором ", который вращается с частотой поля двигателя.

Математический аппарат векторного управления


Wikimedia Foundation . 2010 .

Смотреть что такое "Векторное управление" в других словарях:

    Калька с нем. Vektorregelung . Метод управления скоростью вращения и/или моментом электрического двигателя с помощью воздействия преобразователем электропривода на векторные составляющие тока статора электродвигателя. В русскоязычной литературе в … Википедия

    Решение задачи оптимального управления математической теории, в к рой управляющее воздействие u=u(t).формируется в виде функции времени (тем самым предполагается, что по ходу процесса никакой информации, кроме заданной в самом начале, в систему… … Математическая энциклопедия

    - (частотно управляемый привод, ЧУП, Variable Frequency Drive, VFD) система управления частотой вращения ротора асинхронного (или синхронного) электродвигателя. Состоит из собственно электродвигателя и частотного преобразователя … Википедия

    У этого термина существуют и другие значения, см. ЧПУ (значения). Эту страницу предлагается объединить с CNC. Пояснение причин и обсуждение на странице Википедия:К объединению/25 ф … Википедия

    Статор и ротор асинхронной машины 0.75 кВт, 1420 об/мин, 50 Гц, 230 400 В, 3.4 2.0 A Асинхронная машина это электрическая машина переменного тока … Википедия

    - (ДПР) деталь электродвигателя. В коллекторных электродвигателях датчиком положения ротора является щёточно коллекторный узел, он же является и коммутатором тока. В бесколлекторных электродвигателях датчик положения ротора может быть разных видов … Википедия

    ДС3 ДС3 010 Основные данные Страна постройки … Википедия

    Асинхронная машина это электрическая машина переменного тока, частота вращения ротора которой не равна (меньше) частоте вращения магнитного поля, создаваемого током обмотки статора. Асинхронные машины наиболее распространённые электрические… … Википедия

    У этого термина существуют и другие значения, см. Преобразователь частоты. Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей … Википедия

    ДС3 … Википедия

Книги

  • Энергосберегающее векторное управление асинхронными электродвигателями: обзор состояния и новые результаты: Монография , Борисевич А.В.. Монография посвящена методам повышения энергоэффективности векторного управления асинхронными электродвигателями. Рассмотрена модель асинхронного электродвигателя и описан принцип векторного…

Согласно последним данным статистики примерно 70% всей выработанной электроэнергии в мире потребляет электропривод. И с каждым годом этот процент растет.

При правильно подобранном способе управления электродвигателем возможно получение максимального КПД, максимального крутящего момента на валу электромашины, и при этом повысится общая производительность механизма. Эффективно работающие электродвигатели потребляют минимум электроэнергии и обеспечивают максимальную экономичность.

Для электродвигателей, работающих от преобразователя частоты ПЧ, эффективность во многом будет зависеть от выбранного способа управления электрической машиной. Только поняв достоинства каждого способа, инженеры и проектировщики систем электроприводов смогут получить максимальную производительность от каждого способа управления.
Содержание:

Способы контроля

Многие люди, работающие в сфере автоматизации, но не сталкивающиеся вплотную с процессами разработки и внедрения систем электроприводов полагают, что управление электродвигателем состоит из последовательности команд, вводимых с помощью интерфейса от пульта управления или ПК. Да, с точки зрения общей иерархии управления автоматизированной системой это правильно, однако есть еще способы управления самим электродвигателем. Именно эти способы и будут оказывать максимальное влияние на производительность всей системы.

Для асинхронных электродвигателей, подключенных к преобразователю частоты, существует четыре основных способа управления:

  • U/f – вольт на герц;
  • U/f с энкодером;
  • Векторное управление с разомкнутым контуром;
  • Векторное управление с замкнутым контуром;

Все четыре метода используют широтно-импульсную модуляцию ШИМ, которая изменяет ширину фиксированного сигнала путем изменения длительности импульсов для создания аналогового сигнала.

Широтно-импульсная модуляция применяется к преобразователю частоты путем использования фиксированного напряжения шины постоянного тока. путем быстрого открытия и закрытия (правильней сказать коммутации) генерируют выходные импульсы. Варьируя ширину этих импульсов на выходе получают «синусоиду» нужной частоты. Даже если форма выходного напряжения транзисторов импульсная, то ток все равно получается в виде синусоиды, так как электродвигатель имеет индуктивность, которая влияет на форму тока. Все методы управления основываются на ШИМ модуляции. Разница между методами управления заключается лишь в методе вычисления подаваемого напряжения на электродвигатель.

В данном случае несущая частота (показана красным) представляет собой максимальную частоту коммутации транзисторов. Несущая частота для инверторов, как правило, лежит в пределах 2 кГц – 15 кГц. Опорная частота (показана синим) представляет собой сигнал задания выходной частоты. Для инверторов применимых в обычных системах электроприводов, как правило, лежит в пределах 0 Гц – 60 Гц. При накладывании сигналов двух частот друг на друга, будет выдаваться сигнал открывания транзистора (обозначен черным цветом), который подводит силовое напряжение к электродвигателю.

Способ управления U/F

Управление вольт-на-герц, наиболее часто называемое как U/F, пожалуй, самый простой способ регулирования. Он часто используется в несложных системах электропривода из-за своей простоты и минимального количества необходимых для работы параметров. Такой способ управления не требует обязательной установки энкодера и обязательных настроек для частотно-регулируемого электропривода (но рекомендовано). Это приводит к меньшим затратам на вспомогательное оборудование (датчики, провода обратных связей, реле и так далее). Управление U/F довольно часто применяют в высокочастотном оборудовании, например, его часто используют в станках с ЧПУ для привода вращения шпинделя.

Модель с постоянным моментом вращения имеет постоянный вращающий момент во всем диапазоне скоростей при одинаковом соотношении U/F. Модель с переменным соотношением вращающего момента имеет более низкое напряжение питания на низких скоростях. Это необходимо для предотвращения насыщения электрической машины.

U/F — это единственный способ регулирования скорости асинхронного электродвигателя, который позволяет регулирование нескольких электроприводов от одного преобразователя частоты. Соответственно все машины запускаются и останавливаются одновременно и работают с одной частотой.

Но данный способ управления имеет несколько ограничений. Например, при использовании способа регулирования U/F без энкодера нет абсолютно никакой уверенности, что вал асинхронной машины вращается. Кроме того, пусковой момент электрической машины при частоте 3 Гц ограничивается 150%. Да, ограниченного крутящего момента более чем достаточно для применения в большинстве существующего оборудования. Например, практически все вентиляторы и насосы используют способ регулирования U/F.

Данный метод относительно прост из-за его более «свободной» спецификации. Регулирование скорости, как правило, лежит в диапазоне 2% — 3% максимальной выходной частоты. Отклик по скорости рассчитывается на частоту свыше 3 Гц. Скорость реагирования частотного преобразователя определяется быстротой его реакции на изменение опорной частоты. Чем выше скорость реагирования – тем быстрее будет реакция электропривода на изменение задания скорости.

Диапазон регулирования скорости при использовании способа U/F составляет 1:40. Умножив это соотношение на максимальную рабочую частоту электропривода, получим значение минимальной частоты, на которой сможет работать электрическая машина. Например, если максимальное значение частоты 60 Гц, а диапазон составляет 1:40, то минимальное значение частоты составит 1,5 Гц.

Паттерн U/F определяет соотношение частоты и напряжения в процессе работы частотно-регулируемого электропривода. Согласно ему, кривая задания скорости вращения (частота электродвигателя) будет определять помимо значения частоты еще и значения напряжения, подводимого к клеммам электрической машины.

Операторы и технические специалисты могут выбрать необходимый шаблон регулирования U/F одним параметром в современном частотном преобразователе. Предустановленные шаблоны уже оптимизированы под конкретные применения. Также существуют возможности создания своих шаблонов, которые будут оптимизироваться под конкретную систему частотно-регулируемого электропривода или электродвигателя.

Такие устройства как вентиляторы или насосы имеют момент нагрузки, который зависит от скорости их вращения. Переменный крутящий момент (рисунок выше) шаблона U/F предотвращает ошибки регулирования и повышает эффективность. Эта модель регулирования уменьшает токи намагничивания на низких частотах за счет снижения напряжения на электрической машине.

Механизмы с постоянным крутящим моментом, такие как конвейеры, экструдеры и другое оборудование используют способ регулирования с постоянным моментом. При постоянной нагрузке необходим полный ток намагничивания на всех скоростях. Соответственно характеристика имеет прямой наклон во всем диапазоне скоростей.


Способ управления U/F с энкодером

Если необходимо повысить точность регулирования скорости вращения в систему управления добавляют энкодер. Введение обратной связи по скорости с помощью энкодера позволяет повысить точность регулирования до 0,03%. Выходное напряжение по-прежнему будет определятся заданным шаблоном U/F.

Данный способ управления не получил широкого применения, так как представляемые им преимущества по сравнению со стандартными функциями U/F минимальны. Пусковой момент, скорость отклика и диапазон регулирования скорости – все идентично со стандартным U/F. Кроме того, при повышении рабочих частот могут возникнуть проблемы с работой энкодера, так как он имеет ограниченное количество оборотов.

Векторное управление без обратной связи

Векторное управление (ВУ) без обратной связи используется для более широкого и динамичного регулирования скорости электрической машины. При пуске от преобразователя частоты электродвигатели могут развивать пусковой момент в 200% от номинального при частоте всего 0,3 Гц. Это значительно расширяет перечень механизмов, где может быть применен асинхронный электропривод с векторным управлением. Этот метод также позволяет управлять моментом машины во всех четырех квадрантах.

Ограничение вращающего момента осуществляется двигателем. Это необходимо для предотвращения повреждения оборудования, машин или продукции. Значение моментов разбивают на четыре различных квадранта, в зависимости направления вращения электрической машины (вперед или назад) и в зависимости от того, реализует ли электродвигатель . Ограничения могут устанавливаться для каждого квадранта отдельно или же пользователь может задать общий вращающий момент в преобразователе частоты.

Двигательный режим асинхронной машины будет при условии, что магнитное поле ротора отстает от магнитного поля статора. Если магнитное поле ротора начнет опережать магнитное поле статора, то тогда машина войдет в режим рекуперативного торможения с отдачей энергии, проще говоря – асинхронный двигатель перейдет в генераторный режим.

Например, машина по закупорке бутылок может использовать ограничение момента в квадранте 1 (направление вперед с положительным моментом) для предотвращения чрезмерного затягивания крышки бутылки. Механизм производит движение вперед и использует положительный момент для того, чтобы закрутить крышку бутылки. А вот устройство, такое как лифт, с противовесом тяжелее, чем пустая кабина, будет использовать квадрант 2 (обратное вращение и положительный момент). Если кабина подымается на верхний этаж, то крутящий момент будет противоположен скорости. Это необходимо для ограничения скорости подъема и недопущения свободного падения противовеса, так как он тяжелее, чем кабина.

Обратная связь по току в данных преобразователях частоты ПЧ позволяет устанавливать ограничения по моменту и току электродвигателя, поскольку при увеличении тока растет и момент. Выходное напряжение ПЧ может изменятся в сторону увеличения, если механизм требует приложения большего крутящего момента, или уменьшатся, если достигнуто его предельно допустимое значение. Это делает принцип векторного управления асинхронной машиной более гибким и динамичным по сравнению с принципом U/F.

Также частотные преобразователи с векторным управлением и разомкнутым контуром имеют более быстрый отклик по скорости – 10 Гц, что делает возможным его применение в механизмах с ударными нагрузками. Например, в дробилках горной породы нагрузка постоянно меняется и зависит от объема и габаритов обрабатываемой породы.

В отличии от шаблона управления U/F векторное управление использует векторный алгоритм, для определения максимально эффективного напряжения работы электродвигателя.

Векторное управления ВУ решает данную задачу благодаря наличию обратной связи по току двигателя. Как правило, обратная связь по току формируется внутренними трансформаторами тока самого преобразователя частоты ПЧ. Благодаря полученному значению тока преобразователь частоты проводит вычисления вращающего момента и потока электрической машины. Базовый вектор тока двигателя математически расщепляется на вектор тока намагничивания (I d) и крутящего момента (I q).

Используя данные и параметры электрической машины ПЧ вычисляет векторы тока намагничивания (I d) и крутящего момента (I q). Для достижения максимальной производительности, преобразователь частоты должен держать I d и I q разведенными на угол 90 0 . Это существенно, так как sin 90 0 = 1, а значение 1 представляет собой максимальное значение крутящего момента.

В целом векторное управление асинхронным электродвигателем осуществляет более жесткий контроль. Регулирование скорости составляет примерно ±0,2% от максимальной частоты, а диапазон регулирования достигает 1:200, что позволяет сохранять вращающий момент при работе на низких скоростях.

Векторное управление с обратной связью

Векторное управление с обратной связью использует тот же алгоритм управления, что и ВУ без обратной связи. Основное различие заключается в наличии энкодера, что дает возможность частотно-регулируемому электроприводу развивать 200% пусковой момент при скорости 0 об/мин. Этот пункт просто необходим для создания начального момента при трогании с места лифтов, кранов и других подъемных машин, чтоб не допустить просадки груза.

Наличие датчика обратной связи по скорости позволяет увеличить время отклика системы более 50 Гц, а также расширить диапазон регулирования скорости до 1:1500. Также наличие обратной связи позволяет управлять не скоростью электрической машиной, а моментом. В некоторых механизмах именно значение момента имеет большую важность. Например, мотальная машина, механизмы закупорки и другие. В таких устройствах необходимо регулировать момент машины.