Мегафон

Типы конденсаторов, их характеристики и назначение. Какие бывают конденсаторы? Типы конденсаторов, их характеристики (8 фото)

Конденсаторы

Конденсатор – один из самых распространённых радиоэлементов. Роль конденсатора в электронной схеме заключается в накоплении электрического заряда, разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и многое другое.

Конструктивно конденсатор состоит из двух проводящих обкладок, изолированных диэлектриком. В зависимости от конструкции и назначения конденсатора диэлектриком может служить воздух, бумага, керамика, слюда.

Основными параметрами конденсаторов являются:

    Номинальная ёмкость . Ёмкость измеряют в Фарадах (Ф) . Ёмкость в 1 Фараду очень велика. К примеру, земной шар имеет ёмкость менее 1 Ф, а точнее около 710 мкф. Правда, тут надо понимать, что физики любят аналогии. Говоря про электрическую ёмкость земного шара, они имеют ввиду, что в качестве примера взят металлический шар размером с планету Земля и являющийся уединённым проводником. Это всего лишь аналогия. В технике существует электронный компонент, который обладает ёмкостью более 1 Фарады – это ионистор .

    В основном, в электронике и радиотехнике используются конденсаторы с ёмкостью равной миллионной доле фарады – микрофарада (1мкФ = 0,000001 Ф ). Также находят применение конденсаторы с ёмкостями исчисляемыми десятками – сотнями нанофарад (1нФ = 0,000000001 Ф ) и пикофарад (1пФ = 0,000000000001 Ф). Номинальную ёмкость указывают на корпусе конденсатора.

    Чтобы не запутаться в сокращениях (мкФ, нФ, пФ), и научиться переводить микрофарады в пикофарады, а нанофарады в микрофарады необходимо знать о сокращённой записи численных величин .

    Номинальное напряжение . Это напряжение, при котором конденсатор выполняет свои функции. При превышении допустимого значения конденсатор будет пробит, то есть, превратится в обычный проводник. Диапазон допустимых значений рабочих напряжений конденсаторов лежит в пределах от нескольких вольт до единиц киловольт (1 киловольт – 1 000 вольт ). Номинальное напряжение маркируют на корпусе конденсатора.

    Изображается конденсатор на принципиальных схемах так, как показано на рисунке.

    Кроме обычных существуют ещё и электролитические конденсаторы . Емкость их намного больше, чем у обычных, следовательно, габариты также существенно больше. Отличительная особенность электролитических конденсаторов – полярность . Если обычные конденсаторы можно впаивать в схему не беспокоясь о полярности прикладываемого к конденсатору напряжения, то электролитический конденсатор необходимо включать в схему строго в соответствии с полярностью напряжения. У электролитических конденсаторов один вывод плюсовой, другой минусовой.

    Обозначение электролитического конденсатора на схемах.

    Также широкое применение получили подстроечные конденсаторы. Подстроечные конденсаторы необходимы в тех случаях, когда требуется точная подстройка ёмкости в электронной схеме. В таких конденсаторах подстройку ёмкости производят один раз или очень редко.

    Обозначается так.

    Наряду с подстроечными конденсаторами существуют и конденсаторы переменной ёмкости . В отличие от подстроечных, переменные конденсаторы служат для частой подстройки ёмкости. В простом (не цифровом) приёмнике настройка на радиостанцию как раз и осуществляется с помощью конденсатора переменной ёмкости.

    Свойства конденсатора

    • Конденсатор не пропускает постоянный ток и является для него изолятором.

      Для переменного тока конденсатор не является преградой. Сопротивление конденсатора (ёмкостное сопротивление) переменному току уменьшается с увеличением его ёмкости и частоты тока, и наоборот, увеличивается с уменьшением его ёмкости и частоты тока.

    Свойство конденсатора оказывать разное сопротивление переменному току нашло широкое применение. Конденсаторы используют для фильтрации, отделения одних частот от других, отделения переменной составляющей от постоянной…

    Вот так выглядят конденсаторы постоянной ёмкости.

    Электролитический конденсатор. Длинный вывод – плюсовой, короткий – минусовой.

    Планарный электролитический конденсатор. На корпусе указана номинальная ёмкость 22 мкФ (22) , номинальное напряжение 16 Вольт (16V) . Видно, что емкость обозначена только цифрами. Ёмкость электролитических конденсаторов указывается в микрофарадах.

    Со стороны отрицательного вывода конденсатора на верхней части корпуса чёрный полукруг.

  • Перевод

Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.

Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.


Начнём с простого

Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.

Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости ε r использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.

Алюминиевые электролитические


Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.

На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.

У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические



Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за состоянием отказа, бывает, что они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки

Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.

Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика


История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Об обнаруженных вами неточностях и ошибках прошу писать через


Электрический конденсатор - один из самых распространених радио элементов, служит он для накопления электроэнергии (заряда). Самый простой конденсатор можно представить в виде двух металлических пластин (обкладок) и диэлектрика который находится между ними.

Когда к конденсатору подключают источник напряжения, то на его обкладках (пластинах) появляются противоположные заряды и возникнет электрическое поле притягивающие их друг к другу, и даже после отключения источника питания, такой заряд остается некоторое время и энергия сохраняется в электрическом поле между обкладками.

В электронных схемах роль конденсатора также может состоять не только в накоплении заряда но и в разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и разных других задачах.
В зависимости от задач и факторов работы, конденсаторы используются очень разных типов и конструкций. Здесь мы рассмотрим наиболее популярные типы конденсаторов.

Конденсаторы алюминиевые электролитические

Это может быть, например, конденсатор К50-35 или К50-2 или же другие более новые типы.
Они состоят из двух тонких полосок алюминия свернутых в рулон, между которыми в том же рулоне находится пропитанная электролитом бумага в роли диэлектрика.
Рулон находится в герметичном алюминиевом цилиндре, чтобы предотвратить высыхание электролита.
На одном из торцов конденсатора (радиальный тип корпуса) или на двух торцах которого (аксиальный тип корпуса) располагаются контактные выводы. Выводы могут быть под пайку либо под винт.


В электролитических конденсаторах емкость исчисляется в микрофарадах и может быть от 0.1 мкф до 100 000 мкф. Как правило большая емкость и характеризует этот тип конденсаторов.
Еще одним из важных параметров есть максимальное рабочее напряжение, которое всегда указывается на корпусе и в конденсаторах этого типа может быть до 500 вольт!


Среди недостатков данного типа можно рассмотреть 3 причины:
1. Полярность. Полярные конденсаторы недопустимы с работой в переменном токе. На корпусе обозначаются соответствующими значками выводы конденсатора, как правило конденсаторы с одним выводом минусовой контакт имеют на корпусе, а плюсовой на выводе.
2. Большой ток утечки. Естественно такие конденсаторы не годятся для длительного хранения энергии заряда, но они хорошо себя зарекомендовали в качестве промежуточных элементов, в фильтрах активных схем и пусковых установках двигателей.
3.Снижение емкости с увеличением частоты. Такой недостаток легко устраняется с помощью параллельно подключенного керамического конденсатора с очень маленькой ёмкостью.

Керамические однослойные конденсаторы

Такие типы, например как К10-7В, К10-19, КД-2. Максимальное напряжения такого типа конденсаторов лежит в пределах 15 - 50 вольт, а ёмкость от 1 пФ до 0.47 мкф при сравнительно небольших размерах довольно не плохой результат технологии.
У данного типа характерны малые токи утечки и низкая индуктивность что позволяет им легко работать на высоких частотах, при постоянном, переменном и пульсирующих токах.
Тангенс угла потерь tgδ не превышает обычно 0,05, а максимальный ток утечки – не более 3 мкА.
Конденсаторы данного типа спокойно переносят внешние факторы, такие как вибрация с частотой до 5000 Гц с ускорением до 40 g, многократные механические удары и линейные нагрузки.


Маркировка на корпусе конденсатора обозначает его номинал. Три цифры расшифровываются следующим образом. Если две первые цифры умножать на 10 в степени третьей цифры, то получится значение емкости данного конденсатора в пф. Так, конденсатор с маркировкой 101 имеет емкость 100 пф, а конденсатор с маркировкой 472 — 4,7 нф. Для удобства составлены таблицы наиболее "ходовых" ёмкостей конденсаторов и их маркировочные коды.
Наиболее часто применяются в фильтрах блоков питания и как фильтр поглощающий высокочастотные импульсы и помехи.

Керамические многослойные конденсаторы

Например К10-17А или К10-17Б.
В отличии от вышеописанных, состоят уже из нескольких слоев металлических пластин и диэлектрика в виде керамики, что позволяет иметь им большую ёмкость чем у однослойных и может быть порядка нескольких микрофарад, но максимальное напряжение у данного типа все также ограничено 50 вольтами.
Применяются в основном как фильтрующие элементы и могут исправно работать как с постоянным так и с переменным и пульсирующим током.

Керамические высоковольтные конденсаторы

Например К15У, КВИ и К15-4
Максимальное рабочее напряжение данного типа может достигать 15 000 вольт! Но ёмкость у них небольшая, порядка 68 - 100 нФ.


Работают они как с переменным так и с постоянным током. Керамика в качестве диэлектрика создает нужное диэлектрическое свойство выдерживать большое напряжение, а особая форма защищает конструкцию от пробоя пластин.


Применение у них самое разнообразное, например в схемах вторичных источников питания в качестве фильтра для поглощения высокочастотных помех и шумов, или в конструирование катушек Тесла, мощной и ламповой радиоаппаратуре.

Танталовые конденсаторы

Например К52-1 или smd А. Основным веществом служит - пентоксид тантала, а в качестве электролита - диоксид марганца.

Твердотельный танталовый конденсатор состоит из четырех основных частей: анода, диэлектрика, электролита (твердого или жидкого) и катода.
По рабочим свойствам танталовые конденсаторы схожи с электролитическими, но рабочее максимальное напряжение ограничено 100 вольтами, а ёмкость как правило не превышает 1000 мкФ.
Но в отличии от электролитических, у данного типа собственная индуктивность намного меньше что дает возможность их использования на высоких частотах, до несколько сотен килогерц.


Основной причиной выхода из строя бывает превышение максимального напряжения.
Применение у них в большинстве наблюдается в современных платах электронных устройств, что возможно из за конструктивной особенности smd-монтажа.

Полиэстеровые конденсаторы

Например K73-17 или CL21, на основе металлизированной пленки...
Весьма популярные из за небольшой стоимости конденсаторы встречающиеся в почти всех электронных устройствах, например в балластах энергосберегающих ламп. Их корпус состоит из эпоксидного компаунда что придает конденсатору устойчивость к внешним неблагоприятным факторам, химическим растворам и перегревам.


Ёмкость таких конденсаторов идет порядка 1 нф - 15мкф и максимальное рабочее напряжение у них от 50 до 1500 вольт.
Большой диапазон максимального напряжения и ёмкости дает возможность использования полиэстеровых конденсаторов в цепях постоянного, переменного и импульсных токов.

Полипропиленовые конденсаторы

Например К78-2 и CBB-60.
В данного типа конденсаторов в качестве диэлектрика выступает полипропиленовая пленка. Корпус изготовлен из негорючих материалов, а сам конденсатор призначен для работы в тяжелых условиях.
Ёмкость, как правило в пределах 100пф - 10мкф, но в последнее время выпускают и больше, а по поводу напряжение то большой запас может достигать и 3000 вольт!

Преимущество этих конденсаторов заключается не только в высоком напряжении, но и в чрезвычайно низком тангенсе угла потерь, поскольку tg? может не превышать 0,001, что позволяет использовать конденсаторы на больших частотах в несколько сотен килогерц и применять их в индукционных обогревателях и пусковых установках асинхронных электродвигателей.

Пусковые конденсаторы (CBB-60) могут иметь ёмкость и до 1000мкф что стает возможным из за особенностей конструкции такого типа конденсаторов. На пластиковый сердечник наматывается металлизированная полипропиленовая пленка, а сверху весь этот рулон покрывается компаундом.

Содержание:

Конденсатор - это прибор, способный накапливать электрические заряды. Он применяется в электрических и электронных схемах повсюду. Современная промышленность выпускает множество их видов, которые отличаются друг от друга по разным параметрам. Это емкость, принцип работы, тип разделения зарядных проводников, диапазон допустимых напряжений, компоновка, материалы, из которых устройство изготовлено.

Любой конденсатор состоит из двух проводников, разделенных изолятором. Так как зарядка конденсатора - это занесение заряженных частиц на эти проводники, причем на один проводник одного знака, на другой - другого, а удерживаться будут заряды силой взаимного притяжения, то эффективность и зависит от этой силы. Она тем больше, чем ближе проводники друг к другу и чем больше их «почти соприкасающаяся» площадь. Разделяющая проводники среда тоже дает свой вклад. Среда эта - диэлектрик, имеющий определенную диэлектрическую проницаемость.

d – толщина диэлектрика, разделяющего металлические пластины

Емкость конденсатора вычисляется по формуле

Где S – площадь обкладок, d – толщина диэлектрика (расстояние между обкладками), а ε – проницаемость используемого диэлектрика относительно вакуума, диэлектрическая проницаемость которого известна довольно точно:

Здесь она выражена через другие единицы системы СИ. Здесь и метры в кубе в знаменателе, и секунды в четвертой степени в числителе, что произошло от формулы, где в знаменателе стоит скорость света в квадрате. И тогда емкость C и измеряется в фарадах.

И из формулы видно, что емкость и зависит как раз от площади обкладок, расстояния между ними (которое заполнено диэлектриком) и материала диэлектрика, значение ε которого можно найти по таблицам. Классификация конденсаторов делается по виду использования, по типу компонент.

Классификация по принципу действия

Самый простой конденсатор еще называется сухим, или твердотельным, потому что все материалы его твердые и самые обыкновенные. Зная описание, его можно изготовить вручную. В качестве изолятора берется бумажная лента, но так как она гигроскопична, то ее пропитывают парафином или маслом.

Сухие конденсаторы

Сухие или мокрые конденсаторы - зависит от заполнения между пластинами. Для сухих это может быть бумага, керамика, слюда, пластик (полиэстер, полипропилен). У каждого из диэлектриков свои физические свойства. Наиболее прочные (керамика) хорошо сопротивляются физическому разрушению и пробою. Пластичные допускают наносить обкладки в виде металлического напыления прямо на слой диэлектрика, что позволяет идти по пути микроминиатюризации.

Типы конденсаторов с другими состояниями компонентов

Кроме твердого диэлектрика, бывают конденсаторы с диэлектриком:

  • жидким;

  • газообразным (наполненные инертным газом для защиты электродов);

  • вакуумным;

  • воздушным.

Однако и электроды бывают не всегда вполне твердые.

Электролитические конденсаторы

Для создания большой емкости используют методы сближения обкладок не механические, а химические. Пользуясь тем, что алюминиевая фольга всегда на воздухе покрывается слоем диэлектрика (Al 2 O 3), к алюминиевому электроду вплотную приближают жидкий электрод в виде электролита. Тогда толщина изолирующего промежутка исчисляется атомными расстояниями, и это резко увеличивает емкость.

d – толщина диэлектрика

Так как на нижней поверхности верхней обкладки имеется слой оксида, диэлектрика, то именно его толщину и следует считать d - толщиной диэлектрика. Нижним электродом является нижняя обкладка, плюс слой электролита, которым пропитана бумага.

В электролитических конденсаторах заряд создается не только свободными электронами металла, но еще и ионами электролита. Поэтому важна полярность подключения.

Кроме электролитических конденсаторов, использующих в качестве изоляции оксид металла, по такому же принципу работают полевые (МОП) транзисторы. Они в электронных схемах часто и используются в качестве конденсаторов, имеющих емкость в несколько десятков нанофарад.

Еще аналогичный принцип работы у конденсаторов оксидно-полупроводниковых, в которых вместо жидкого электролита - твердый полупроводник. Но этими типами не исчерпываются конденсаторы, слой диэлектрика у которых имеет микроскопическую толщину.

Суперконденсатор, или ионистор

Возможен еще вариант создания слоя, играющего роль диэлектрика, в жидком электролите. Если залить им поверхность некоего пористого проводника (активированного угля), то при наличии на нем заряда ионы противоположного знака из электролита «прилипают» к проводнику. А к ним, в свою очередь, присоединяются другие ионы. И все вместе образует многослойную конструкцию, способную накапливать электрические заряды.

Процессы в жидком электролите особого состава для суперконденсаторов уже напоминают нечто, что происходит в электролитах аккумуляторов. Ионистор и по своим характеристикам приближается к аккумуляторам, кроме того, его зарядка проходит легче и быстрее. И в них в циклах зарядки/разрядки не происходит порчи электродов, как это обычно бывает в аккумуляторах. Ионисторы более надежные, долговечные, и ими как устройствами питания оснащают электротранспортные средства. А пористое вещество электродов дает просто колоссальную площадь поверхности. Вместе с наноскопически малой толщиной изолирующего слоя в электролите это и создает гигантскую емкость суперконденсаторов (ультраконденсаторов) - фарады, десятки и сотни фарад. Выпускается множество различных суперконденсаторов, некоторые по виду не отличаются от аккумуляторов.

Классификация по применению

Большинство конденсаторов изготовляются для использования в отлаженных, настроенных электрических схемах и цепях. Но во многих схемах производится настройка электрических или частотных параметров. Конденсаторы для этой цели очень удобны: можно менять емкость без изменения электрических контактов между обкладками.

По этому признаку конденсаторы бывают постоянными, переменными и подстроечными.

Подстроечные обычно исполняются в миниатюрном виде и предназначены для постоянной работы в схемах после небольшой предварительной оптимизирующей подстройки. Переменные имеют более широкие диапазоны параметров, чтобы проводить систематическую настройку (например, поиск волны в радиоприемнике).

По диапазону напряжений

Диапазон рабочих напряжений - очень важная характеристика конденсатора. В электронных схемах напряжения обычно небольшие. Верхняя граница - около 100 вольт. Но схемы электропитания, различные блоки питания, выпрямители, стабилизаторы приборов требуют установки конденсаторов, которые могли бы выдерживать напряжения до 400–500 вольт - с учетом возможных всплесков, и даже до 1000 вольт.

Но в сетях передачи электроэнергии напряжения бывают гораздо выше. Существуют высоковольтные конденсаторы специального исполнения.

Использование конденсатора вне его диапазона напряжений грозит пробоем. После пробоя устройство становится просто проводником и свои функции выполнять перестает. Особенно это опасно там, где конденсатор устанавливается для развязки схем по току, как отделяющий постоянное напряжение от переменной составляющей. В этом случае пробой грозит той части схемы, куда после этого хлынет постоянное напряжение: могут гореть другие элементы, может быть поражение электрическим током. Для электролитических конденсаторов это явление грозит еще и взрывом.

Слева – до 35 кВ, справа – до 4 кВ

Так как для пробоя на высоком напряжении нужен определенный минимум расстояния между проводниками, обычно для высоковольтного исполнения приборы и выполняются значительными по размерам. Или бывают изготовлены из определенных стойких к пробою материалов: керамические и … метало-бумажные. Разумеется, все в соответствующем по свойствам корпусе.

Маркировка конденсаторов

Существует несколько маркировок. Старая маркировка может состоять из трех или четырех цифр, в этом случае первые две (три) цифры означают мантиссу емкости (в пикофарадах), последняя цифра дает степень множителя-десятки.

Так выглядит трехзначная маркировка конденсаторов (обозначение емкостей)

Как видим, такая маркировка охватывает только емкость конденсаторов.

Кодовая маркировка содержит информацию и о материалах, и о напряжениях, и о допусках.

На больших конденсаторах обозначения располагают прямо на корпусе.

При отсутствии обозначений, касающихся напряжения, это низковольтный прибор. Встречаются условные буквенные обозначения напряжений.

Полярность обозначается «+ -» или канавкой кольцевого вида около минусового вывода. При наличии этого обозначения полярность соблюдать неукоснительно!

Конденсатор - это двухполюсник с определённым или переменным значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля.

Конденсатор является пассивным электронным компонентом. В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Практически применяемые конденсаторы имеют много слоёв диэлектрика и многослойные электроды, или ленты чередующихся диэлектрика и электродов, свёрнутые в цилиндр или параллелепипед со скруглёнными четырьмя рёбрами (из-за намотки).

Изобрел первую конструкцию-прототип электрического конденсатора «лейденскую банку» в 1745 году, в Лейдене, немецкий каноник Эвальд Юрген фон Клейст и независимо от него голландский физик Питер ван Мушенбрук.

Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.

Резонансная частота конденсатора равна: f р = 1/ (2∏ ∙ √ L с ∙ C ) .

При f > fp конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах f < fp , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2-3 раза ниже резонансной.

Отечественные неполярные конденсаторы:

На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 1·10 6 пФ = 1·10 −6 Ф) и пикофарадах, но нередко и в нанофарадах (1 нФ = 1·10 −9 Ф). При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, то есть постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения. Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мкФ x 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10 - 180».

Основные параметры конденсаторов:

  1. Основной характеристикой конденсатора является его ёмкость , характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками. Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.
  2. Конденсаторы также характеризуются удельной ёмкостью - отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.
  3. Плотность энергии электролитического конденсатора зависит от конструктивного исполнения. Максимальная плотность достигается у больших конденсаторов, где масса корпуса невелика по сравнению с массой обкладок и электролита.
  4. Другой, не менее важной характеристикой конденсаторов является номинальное напряжение - значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах. Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается, что связано с увеличением тепловой скорости движения носителей заряда и, соответственно, снижению требований для образования электрического пробоя.
  5. Полярность . Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

Обозначение на схемах:

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

По виду диэлектрика различают:

  1. Конденсаторы вакуумные (между обкладками находится вакуум).
  2. Конденсаторы с газообразным диэлектриком.
  3. Конденсаторы с жидким диэлектриком.
  4. Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
  5. Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные - бумажноплёночные, тонкослойные из органических синтетических плёнок.
  6. Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего большой удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) - это или электролит (в электролитических конденсаторах), или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спечённого порошка. Время наработки на отказ типичнного электролитического конденсатора 3000-5000 часов при максимально допустимой температуре, качественные конденсаторы имеют время наработки на отказ не менее 8000 часов при температуре 105°С. Рабочая температура - основной фактор, влияющий на продолжительность срока службы конденсатора. Если нагрев конденсатора незначителен из-за потерь в диэлектрике, обкладках и выводах, (например, при использовании его во времязадающих цепях при небольших токах или в качестве разделительных), можно принять, что интенсивность отказов снижается вдвое при снижении рабочей температуры на каждые 10 °C вплоть до +25 °C. Твердотельные конденсаторы - вместо традиционного жидкого электролита используется специальный токопроводящий органический полимер или полимеризованный органический полупроводник. Время наработки на отказ ~50000 часов при температуре 85°С. ЭПС меньше чем у жидко-электролитических и слабо зависит от температуры. Не взрываются.

Вакуумный конденсатор:

Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

  1. Постоянные конденсаторы - основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
  2. Переменные конденсаторы - конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термоконденсаторы). Применяются, например, в радиоприёмниках для перестройки частоты резонансного контура.
  3. Подстроечные конденсаторы - конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

Два бумажных электролитических конденсатора 1930 года:

В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические, пусковые и другие конденсаторы.

Серебрянный конденсатор для аудио.

Также различают конденсаторы по форме обкладок: