Мтс

Тиристоры - это что такое? Принцип работы и характеристики тиристоров. Тиристор для чайников: схема включения и способы управления

Абсолютно любой тиристор может быть в двух устойчивых состояниях - закрыт или открыт

В закрытом состоянии он находится в состоянии низкой проводимости и ток почти не идет, в открытом, наоборот полупроводник будет находится в состоянии высокой проводимости, ток проходит через него фактически без сопротивления

Можно сказать, что тиристор это электрический силовой управляемый ключ. Но по сути управляющий сигнал может только открыть полупроводник. Чтобы запереть его обратно, требуется выполнить условия, направленные на снижение прямого тока почти до нуля.

Структурно тиристор представляет последовательность четырех, слоев p и n типа, образующих структуру р-n-р-n и соединенных последовательно.

Одна из крайних областей, на которую подключают положительный полюс питания называют анод , р – типа
Другая, к которой подсоединяют отрицательное полюс напряжения, называют катод , – n типа
Управляющий электрод подключен к внутренним слоям.

Для того чтоб разобраться с работой тиристора рассмотрим несколько случаев, первый: напряжение на управляющий электрод не подается , тиристор подсоединен по схеме динистора – положительное напряжение поступает на анод, а отрицательное на катод, смотри рисунок.

В этом случае коллекторный p-n-переход тиристора находится в закрытом состоянии, а эмиттерный – открыт. Открытые переходы имеют очень низкое сопротивление, поэтому почти все напряжение, следующее от источника питания, приложено к коллекторному переходу, из-за высокого сопротивления которого протекающий через полупроводниковый прибор ток имеет очень низкое значение.

На графике ВАХ это состояние актуально для участка отмеченного цифрой 1 .

При увеличении уровня напряжения, до определенного момента ток тиристора почти не растет. Но достигая условного критического уровня - напряжение включения U вкл , в динисторе появляются факторы, при которых в коллекторном переходе начинается резкий рост свободных носителей заряда, которое почти сразу же носит лавинный характер . В результате происходит обратимый электрический пробой (на представленном рисунке – точка 2). В p -области коллекторного перехода появляется избыточная зона накопленных положительных зарядов, в n -области, наоборот происходит накопление электронов. Рост концентрации свободных носителей заряда приводит к падению потенциального барьера на всех трех переходах , через эмиттерные переходы начинается инжекция носителей заряда. Лавинообразный характер еще сильнее увеличивается, и приводит к переключению коллекторного перехода в открытое состоянии. Одновременно увеличивается ток по всем областям полупроводника, в результате происходит падением напряжения между катодом и анодом, показанный на графике выше отрезком отмеченным цифрой три. В этот момент времени динистор обладает отрицательным дифференциальным сопротивлением. На сопротивлении R n растет напряжение и полупроводник переключается.

После открытия коллекторного перехода ВАХ динистора становится такой же, как на прямой ветви - отрезок №4. После переключения полупроводникового прибора, напряжение снижается до уровня одного вольта. В дальнейшем увеличение уровня напряжения или снижение сопротивления приведет к увеличению выходного тока, один в один, как и работе диода при его прямом включении. Если же уровень напряжение питания снизить, то высокое сопротивление коллекторного перехода, практически мгновенно восстанавливается, динистор закрывается, ток резко падает .

Напряжение включения U вкл , можно настраивать, внося в любой из промежуточных слоев, рядом с к коллекторным переходом, неосновные, для него носители заряда.

С этой целью используется специальный управляющий электрод , запитываемый от дополнительного источника, с которого следует управляющее напряжение – U упр . Как хорошо видно из графика – при росте U упр напряжение включения снижается.

Основные характеристики тиристоров

U вкл напряжение включения – при нем осуществляется переход тиристора в открытое состояние
U o6p.max – импульсное повторяющееся обратное напряжение при нем происходит электрический пробой p-n перехода. Для многих тиристоров будет верно выражение U o6p.max . = U вкл
I max - максимально допустимое значение тока
I ср - среднее значение тока за период U np - прямое падение напряжения при открытом тиристоре
I o6p.max - обратный максимальный ток начинающий течь при приложении U o6p.max , за счет перемещения неосновных носителей заряда
I удерж ток удержания – значение анодного тока, при котором осуществляется запирание тиристора
P max - максимальная рассеиваемая мощность
t откл - время отключения необходимое для запирания тиристора

Запираемые тиристоры - имеет классическую четырехслойную p-n-p-n структуру, но при этом обладает рядом конструктивных особенностей, дающих такую функциональную возможность, как полная управляемость. Благодаря такому воздействию от управляющего электрода, запираемые тиристоры могут переходить не только в открытое состояние из закрытого, но и из открытого в закрытое. Для этого на управляющий электрод поступает напряжение, противоположное тому, которое ранее открывает тиристор. Для запирания тиристора на управляющей электрод следует мощный, но короткий по длительности импульс отрицательного тока. При применении запираемых тиристоров следует помнить, что их предельные значения на 30% ниже, чем у обычных. В схемотехнике, запираемые тиристоры активно применяются в роли электронных ключей в преобразовательной и импульсной технике.

В отличие от своих четырехслойных родственников - тиристоров, они имеют пятислойную структуру.


Благодаря такой структуре полупроводника они имеют возможность пропускать ток в обоих направлениях – как от катода к аноду, так и от анода к катоду, а на управляющий электрод поступает напряжение обоих полярностей. Благодаря этому свойству вольт-амперная характеристика симистора имеет симметричный вид в обоих осях координат. Узнать о работе симистора вы можете из видеоурока, по ссылке ниже.


Принцип работы симистора

Если у стандартного тиристора имеются анод и катод то электроды симистора так описать нельзя т.к каждый уго электрод является и анодом и катодом одновременно. Поэтому симистор способен пропускать ток в обоих направлениях. Именно поэтому он отлично работает в цепях переменного тока.

Очень простой схемой, поясняющей принцип симистора является регулятор симисторный регулятор мощности.


После подачи напряжения на один из выводов симистора поступает переменное напряжение. На электрод, являющийся управляющим с диодного моста поступает отрицательное управляющее напряжение. При превышении порога включения симистор отпирается и ток поступает в подключенную нагрузку. В момент времени, когда на входе симистора меняется полярность напряжения он запирается. Затем алгоритм повторяется.

Чем выше уровень управляющего напряжения тем быстрее срабатывает симистор и длительность импульса на нагрузке увеличивается. При снижении уровня управляющего напряжения длительность импульсов на нагрузке также снижается. На выходе симисторного регулятора напряжение будет пилообразной формы с регулируемой длительностью импульса. Таким образом, регулируя управляющее напряжение мы можем изменять яркость лампочки накаливания или температуру жала паяльника подключенных в качестве нагрузки.

Итак симистор управляется как отрицательным так и положительным напряжением. Давайте выделим его минусы и плюсы.

Плюсы: низкая стоимость, большой срок службы, отсутствие контактов и, как следствие, отсутствие искрения и дребезга.
Минусы: достаточно чувствителен к перегреву и его обычно монтируют на радиаторе. Не работает на высоких частотах, так как не успевает переходить из открытого состояния в закрытое. Реагирует на внешниепомехи, вызывающие ложное срабатывание.

Следует также упомянуть о особенностях монтажа симисторов в современной электронной техники.

При малых нагрузках или если в ней протекают короткие импульсные токи, монтаж симисторов можно осуществлять без теплоотводящего радиатора. Во всех остальных случаях – его наличие строго обязательно.
К теплоотводу тиристор может фиксироваться крепежным зажимом или винтом
Для снижения вероятности ложного срабатывания из-за шумов, длина проводов должна быть минимальна. Для подсоединения рекомендуется использовать экранированный кабель или витую пару.

Или оптотиристоры специализированные полупроводники, конструктивной особенностью которого является наличие фотоэлемента, который является управляющим электродом.

Современной и перспективной разновидностью симистора являетсяо оптосимистор. Вместо управляющего электрода в корпусе имеется светодиод и управление происходит с помощью изменения напряжения питания на светодиоде. При попадании светового потока задонной мощности фотоэлемент переключает тиристор в открытое положение. Самой основной функцией в оптосимисторе является то, что между цепью управления и силовой имеется полная гальваническая развязка. Это создает просто отличный уровень и надежности конструкции.

Силовые ключи . Одним из главных моментов, влияющих на востребованность таких схем, служит низкая мощность, которую способен рассеять тиристор в схемах переключения. В запертом состоянии мощность практически не расходуется, т.к ток близок к нулевым значениям. А в открытом состоянии рассеиваемая мощность невелика благодаря низким значениям напряжения

Пороговые устройства – в них реализуется главное свойство тиристоров – открываться при достижении напряжением нужного уровня. Это используется в фазовых регуляторах мощности и релаксационных генераторах

Для прерывания и включения-выключения используются запирающие тиристоры. Правда, в данном случае схемам необходима определенная доработка.

Экспериментальные устройства – в них применяется свойство тиристора обладать отрицательным сопротивление, находясь в переходном режиме

Принцип работы и свойства динистора, схемы на динисторах

Динистор это разновидность полупроводниковых диодов относящихся к классу тиристоров. Динистор состоит из четырех областей различной проводимости и имеет три p-n перехода. В электроники он нашел довольно ограниченное применение, ходя его можно найти в конструкциях энергосберегающих ламп под цоколь E14 и E27, где он применяется в схемах запуска. Кроме того он попадается в пускорегулирующих аппаратах ламп дневного света.

Тиристоры - это силовые электронные ключи, управляемые не полностью. Нередко в технических книгах можно увидеть еще одно название этого прибора - однооперационный тиристор. Другими словами, под воздействием управляющего сигнала он переводится в одно состояние - проводящее. Если конкретизировать, то он включает цепь. Чтобы она выключалась, необходимо создать специальные условия, которые обеспечивают падение прямого тока в цепи до нулевого значения.

Особенности тиристоров

Тиристорные ключи проводят электрический ток только в прямом направлении, причем в закрытом состоянии он выдерживает не только прямое, но и обратное напряжение. Структура тиристора четырехслойная, имеется три вывода:

  1. Анод (обозначается буквой А).
  2. Катод (буквой С или К).
  3. Управляющий электрод (У или G).

У тиристоров есть целое семейство вольт-амперных характеристик, по ним можно судить о состоянии элемента. Тиристоры - это очень мощные электронные ключи, они способны проводить коммутацию цепей, в которых напряжение может достигать 5000 вольт, а сила тока - 5000 ампер (при этом частота не превышает 1000 Гц).

Работа тиристора в цепях постоянного тока

Обычный тиристор включается путем подачи токового импульса на управляющий вывод. Причем он должен быть положительным (по отношению к катоду). Длительность переходного процесса зависит от характера нагрузки (индуктивная, активная), амплитуды и скорости нарастания в цепи управления импульса тока, температуры кристалла полупроводника, а также приложенного тока и напряжения на имеющиеся в схеме тиристоры. Характеристики схемы напрямую зависят от вида используемого полупроводникового элемента.

В той цепи, в которой находится тиристор, недопустимо возникновение большой скорости нарастания напряжения. А именно такого значения, при котором происходит самопроизвольное включение элемента (даже если нет сигнала в цепи управления). Но одновременно с этим у сигнала управления должна быть очень высокая крутизна характеристики.

Способы выключения

Можно выделить два типа коммутации тиристоров:

  1. Естественная.
  2. Принудительная.

А теперь более подробно о каждом виде. Естественная возникает тогда, когда тиристор работает в цепи переменного тока. Причем происходит эта коммутация тогда, когда ток падает до нулевого значения. А вот осуществить принудительную коммутацию можно большим количеством различных способов. Какое управление тиристором выбрать, решать разработчику схемы, но стоит поговорить о каждом типе отдельно.

Самым характерным способом принудительной коммутации является подключение конденсатора, который был заранее заряжен при помощи кнопки (ключа). LC-цепь включается в схему управления тиристором. Эта цепочка и содержит заряженный полностью конденсатор. При переходном процессе в нагрузочной цепи происходят колебания тока.

Способы принудительной коммутации

Существует еще несколько типов принудительной коммутации. Нередко применяют схему, в которой используется коммутирующий конденсатор, имеющий обратную полярность. Например, этот конденсатор может включаться в цепь при помощи какого-либо вспомогательного тиристора. При этом произойдет разряд на основной (рабочий) тиристор. Это приведет к тому, что у конденсатора ток, направленный навстречу прямому току основного тиристора, будет способствовать снижению тока в цепи вплоть до нуля. Следовательно, произойдет выключение тиристора. Это случается по той причине, что устройство тиристора имеет свои особенности, характерные только для него.

Существуют также схемы, в которых подключаются LC-цепочки. Они разряжаются (причем с колебаниями). В самом начале ток разряда течет навстречу рабочему, а после уравнивания их значений происходит выключение тиристора. После из колебательной цепочки ток перетекает через тиристор в полупроводниковый диод. При этом, покуда течет ток, к тиристору прикладывается некоторое напряжение. Оно по модулю равно падению напряжения на диоде.

Работа тиристора в цепях переменного тока

Если тиристор включить в цепь переменного тока, можно осуществить такие операции:

  1. Включить или отключить электрическую цепь с активно-резистивной или активной нагрузкой.
  2. Изменить среднее и действующее значение тока, который проходит через нагрузку, благодаря возможности регулировать момент подачи сигнала управления.

У тиристорных ключей имеется одна особенность - они проводят ток только в одном направлении. Следовательно, если необходимо использовать их в цепях приходится применять встречно-параллельное включение. Действующие и средние значения тока могут изменяться из-за того, что момент подачи сигнала на тиристоры различный. При этом мощность тиристора должна соответствовать минимальным требованиям.

Фазовый метод управления

При фазовом методе управления с коммутацией принудительного типа происходит регулировка нагрузки благодаря изменению углов между фазами. Искусственную коммутацию можно осуществить при помощи специальных цепей, либо же необходимо использовать полностью управляемые (запираемые) тиристоры. На их основе, как правило, изготавливают которое позволяет регулировать в зависимости от уровня зарядки аккумуляторной батареи.

Широтно-импульсное управление

Называют еще его ШИМ-модуляцией. Во время открытия тиристоров подается сигнал управления. Переходы открыты, а на нагрузке имеется некоторое напряжение. Во время закрытия (в течение всего переходного процесса) не подается сигнал управления, следовательно, тиристоры не проводят ток. При осуществлении фазового управления токовая кривая не синусоидальна, происходит изменение формы сигнала напряжения питания. Следовательно, происходит также нарушение работы потребителей, которые чувствительны к высокочастотным помехам (появляется несовместимость). Несложную конструкцию имеет регулятор на тиристоре, который без проблем позволит изменить необходимую величину. И не нужно применять массивные ЛАТРы.

Тиристоры запираемые

Тиристоры - это очень мощные электронные ключи, используются для коммутации высоких напряжений и токов. Но есть у них один огромный недостаток - управление неполное. А если конкретнее, то это проявляется тем, что для отключения тиристора нужно создавать условия, при котором прямой ток будет снижаться до нуля.

Именно эта особенность накладывает некоторые ограничения на использование тиристоров, а также усложняет схемы на их основе. Чтобы избавиться от такого рода недостатков, были разработаны специальные конструкции тиристоров, которые запираются сигналом по одному электроду управления. Их называют двухоперационными, или запираемыми, тиристорами.

Конструкция запираемого тиристора

Четырехслойная структура р-п-р-п у тиристоров имеет свои особенности. Они придают им отличия от обычных тиристоров. Речь сейчас идет о полной управляемости элемента. Вольт-амперная характеристика (статическая) при прямом направлении такая же, как и у простых тиристоров. Вот только прямой ток тиристор может пропускать куда больший по значению. Но функции блокировки больших обратных напряжений у запираемых тиристоров не предусмотрено. Поэтому необходимо соединять его встречно-параллельно с

Характерная особенность запираемого тиристора - это значительное падение прямых напряжений. Чтобы произвести отключение, следует осуществить подачу на управляющий вывод мощного импульса тока (отрицательного, в соотношении 1:5 к прямому значению тока). Но только длительность импульса должна быть как можно меньшей - 10... 100 мкс. Запираемые тиристоры обладают более низким значением предельного напряжения и тока, нежели обычные. Разница составляет примерно 25-30 %.

Виды тиристоров

Выше были рассмотрены запираемые, но существует еще немало типов полупроводниковых тиристоров, о которых также стоит упомянуть. В самых различных конструкциях (зарядные устройства, переключатели, регуляторы мощности) используются определенные типы тиристоров. Где-то требуется, чтобы управление проводилось путем подачи потока света, значит, используется оптотиристор. Его особенность заключается в том, что в цепи управления используется кристалл полупроводника, чувствительный к свету. Параметры тиристоров различны, у всех свои особенности, характерные только для них. Поэтому нужно хотя бы в общих чертах представлять, какие виды этих полупроводников существуют и где они могут применяться. Итак, вот весь список и основные особенности каждого типа:

  1. Диод-тиристор. Эквивалент этого элемента - тиристор, к которому подключен встречно-параллельно полупроводниковый диод.
  2. Динистор (диодный тиристор). Он может переходить в состояние полной проводимости, если превышается определенный уровень напряжения.
  3. Симистор (симметричный тиристор). Его эквивалент - два тиристора, включенных встречно-параллельно.
  4. Тиристор инверторный быстродействующий отличается высокой скоростью коммутации (5... 50 мкс).
  5. Тиристоры с управлением Часто можно встретить конструкции на основе МОП-транзисторов.
  6. Оптические тиристоры, которые управляются потоками света.

Осуществление защиты элемента

Тиристоры - это приборы, которые критичны к скоростям нарастания прямого тока и прямого напряжения. Для них, как и для полупроводниковых диодов, характерно такое явление, как протекание обратных токов восстановления, которое очень быстро и резко падает до нулевого значения, усугубляя этим вероятность возникновения перенапряжения. Это перенапряжение является следствием того, что резко прекращается ток во всех элементах схемы, которые имеют индуктивность (даже сверхмалые индуктивности, характерные для монтажа - провода, дорожки платы). Для осуществления защиты необходимо использовать разнообразные схемы, позволяющие в динамических режимах работы защититься от высоких напряжений и токов.

Как правило, источника напряжения, который входит в цепь работающего тиристора, имеет такое значение, что его более чем достаточно для того, чтобы в дальнейшем не включать в схему некоторую дополнительную индуктивность. По этой причине в практике чаще используется цепочка формирования траектории переключения, которая значительно снижает скорость и уровень перенапряжения в схеме при отключении тиристора. Емкостно-резистивные цепочки наиболее часто используются для этих целей. Они включаются с тиристором параллельно. Имеется довольно много видов схемотехнических модификаций таких цепей, а также методик их расчетов, параметров для работы тиристоров в различных режимах и условиях. А вот цепь формирования траектории переключения запираемого тиристора будет такая же, как и у транзисторов.

Для того чтобы ясно представить себе работу необходимо дать понятие о сущности работы тиристора.

Управляемый проводник, состоящий из четырех полупроводниковых переходов P-N-P-N. Его принцип работы аналогичен работе диода и осуществляется при поступлении на управляющий электрод электротока.

Прохождение через тиристор тока возможно только в том случае, если потенциал анода будет выше, чем потенциал катода. Ток через тиристор прекращает проходить тогда, когда величина тока снизится до порога закрытия. Ток, который поступает на управляющий электрод не оказывает воздействие на величину тока в основной части тиристора и, кроме того ему не нужна постоянная поддержка при основном состоянии тиристора, он необходим исключительно для открытия тиристора.

Существует несколько решающих характеристик тиристора

В открытом состоянии, благоприятном для токопроводящей функции тиристор характеризуют следующие показатели:

  • Падение напряжения, оно определяется как пороговое напряжение с помощью внутреннего сопротивления.
  • Максимально допустимое значение тока до 5000 А, среднеквадратичная величина, свойственная для самых мощных компонентов.

В запертом состоянии тиристора – это:

  • Прямое максимально допустимое напряжение (выше, чем 5000А).
  • В общем случае прямое и обратное значение напряжения одинаковы.
  • Время запирания или время с минимальным значением, в течение которого на тиристор не осуществляется влияние положительного значения напряжения анода относительно катода, иначе произойдет самопроизвольное отпирание тиристора.
  • Ток управления, свойственный для открытой основной части тиристора.

Существуют тиристоры, предназначенные для работы в схемах, рассчитанных на небольшое значение частоты и для схем с высокой частотой. Это так называемые быстродействующие тиристоры, их область применения рассчитана на несколько килогерц. Для быстродействующих тиристоров характерно использование неодинакового прямого и обратного напряжения.

Для увеличения постоянного значения напряжения

Рис. №1. Габаритно-присоединительные размеры и чертеж тиристора. m 1, m 2 –контрольные точки, в которых происходит замер импульсного напряжения во время открытого состояния. L 1 min –наименьший воздушный промежуток (расстояние) по воздуху между выводами анода и управляющего электрода; L 2 min – минимальное расстояние длина прохождения тока утечки между выводами.

Разновидности тиристоров

  • – тиристор диодный, имеет два вывода анод и катод.
  • Тринистор – триодный тиристор оснащен добавочным управляющим электродом.
  • Симистор – симметричный тиристор, он является встречно-последовательным соединением тиристоров, обладает возможностью пропускать ток в прямом и обратном направлениях.

Рис. №2. Структура (а) и вольт-амперная характеристика (ВАХ) тиристора.

Тиристоры предназначены для работы в схемах с различными границами частот, в обычном применении тиристоры могут соединяться с диодами, который подключается встречно-включенным способом, это свойство используется для того чтобы увеличить постоянное напряжение, величину которого компонент способен выдержать в выключенном состоянии. Для усовершенствованных схем используется тиристор GTO (Gate Turn Oee – запираемый тиристор) , он полностью управляем. Его запирание происходит по управляющему электроду. Использование тиристоров подобного рода нашло применение в очень мощных преобразователях, так как он может пропускать высокие токи.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Тиристор – это полупроводниковый ключ, конструкция которого представляет собой четыре слоя. Они обладают способностью переходить из одного состояния в другое – из закрытого в открытое и наоборот.

Информация, представленная в данной статье, поможет дать исчерпывающий ответ на вопрос об этом аппарате.

Принцип функционирования тиристора

В специализированной литературе этот прибор также носит название однооперационного тиристора. Это название обусловлено тем, что устройство является не полностью управляемым . Другими словами, при получении сигнала от управляющего объекта он может только перейти в режим включенного состояния. Для того чтобы выключить прибор, человеку придется выполнить дополнительные действия, которые и приведут к падению уровня напряжения до нулевой отметки.

Работа этого прибора основывается на использовании силового электрического поля. Для его переключения из одного состояния в другое применяется технология управления, передающая определенные сигналы. При этом ток по тиристору может двигаться только в одном направлении. В выключенном состоянии этот прибор обладает способностью выдерживать как прямой, так и обратное напряжение.

Способы включения и выключения тиристора

Переход в рабочее состояние стандартного этого типа аппарата осуществляет путем поучения импульса токового напряжения в определенной полярности. На скорость включения и на то, как он впоследствии будет работать, влияют следующие факторы:

Выключение тиристора может быть осуществлено некоторыми способами:

  1. Естественное выключение. В технической литературе также встречается такое понятие, как естественная коммутация – оно аналогично естественному выключению.
  2. Принудительное выключение (принудительная коммутация).

Естественное выключение этого аппарата осуществляется в процессе его функционирования в цепях с переменным током, когда происходит понижение уровня тока до нулевой отметки.

Принудительное выключение включает в себя большое количество самых разнообразных способов. Самым распространенным из них является следующий метод.

Конденсатор, обозначаемый латинской буквой C, соединяется с ключом. Он должен обозначаться маркеровкой S. При этом конденсатор перед замыканием должен быть заряжен.

Основные типы тиристоров

В настоящее время существует немалое количество тиристоров, которые различаются между собой своими техническими характеристиками – скоростью функционирования, способами и процессами управления, направлениями тока при нахождении в проводящем состоянии и др.

Наиболее распространенные типы

  1. Тиристор-диод. Такой прибор аналогичен устройству, которое имеет встречно-параллельный диод во включенном режиме.
  2. Диодный тиристор. Другое название – динистор. Отличительной характеристикой этого устройства является то, что переход в проводящий режим осуществляется в момент, когда уровень тока превышен.
  3. Запираемый тиристор.
  4. Симметричный. Он также носит название симистора. Конструкция этого прибора аналогична двум устройствам со встречно-параллельным диодами при нахождении в режиме работы.
  5. Быстродействующий или инверторный. Этот тип устройства обладает способностью переходить в нерабочее состояние за рекордно короткое время – от 5 до 50 микросекунд.
  6. Оптотиристор. Его работа осуществляется при помощи светового потока.
  7. Тиристор под полевым управлением по ведущему электроду.

Обеспечение защиты

Тиристоры входят в перечень приборов, которые критично влияют на изменение скорости увеличения прямого тока. Как и для диодов, так и для тиристоров характерен процесс протекания обратного тока восстановления. Резкое изменение его скорости и падение до нулевой отметки приводит к повышенному риску возникновения перенапряжения.

Кроме того, перенапряжение в конструкции этого прибора может возникать вследствие полного исчезновении напряжения в разнообразных составных частях системы, например, в малых индуктивностях монтажа.

По вышеуказанным причинам в подавляющем большинстве случаев для обеспечения надежной защиты этих приборов применяют разнообразные схемы ЦФТП. Данные схемы при нахождении в динамическом режиме помогают защищать устройство от возникновения недопустимых значений напряжения.

Надежным средством защиты также является применение варистора . Это устройство подключается к местам вывода индуктивной нагрузки.

В самом общем виде применение такого прибора, как тиристор, можно разделить на следующие группы:

Ограничения тиристора

При работе с любым типом этого прибора следует соблюдать определенные правила техники безопасности, а также помнить о некоторых необходимых ограничениях.

Например, в случае с индуктивной нагрузкой при функционировании такой разновидности прибора, как симистор. В данной ситуации ограничения касаются скорости изменения уровня напряжения между двумя основными элементами – его анодами и рабочим током. Для ограничения влияния тока и перегрузки применяется RC-цепочка .

Режим обратного запирания

Рис. 3. Режим обратного запирания тиристора

Два основных фактора ограничивают режим обратного пробоя и прямого пробоя:

  1. Прокол обеднённой области .

В режиме обратного запирания к аноду прибора приложено напряжение , отрицательное по отношению к катоду; переходы J1 и J3 смещены в обратном направлении, а переход J2 смещён в прямом (см. рис. 3). В этом случае большая часть приложенного напряжения падает на одном из переходов J1 или J3 (в зависимости от степени легирования различных областей). Пусть это будет переход J1. В зависимости от толщины W n1 слоя n1 пробой вызывается лавинным умножением (толщина обеднённой области при пробое меньше W n1) либо проколом (обеднённый слой распространяется на всю область n1, и происходит смыкание переходов J1 и J2).

Режим прямого запирания

При прямом запирании напряжение на аноде положительно по отношению к катоду и обратно смещён только переход J2. Переходы J1 и J3 смещены в прямом направлении. Большая часть приложенного напряжения падает на переходе J2. Через переходы J1 и J3 в области, примыкающие к переходу J2, инжектируются неосновные носители, которые уменьшают сопротивление перехода J2, увеличивают ток через него и уменьшают падение напряжения на нём. При повышении прямого напряжения ток через тиристор сначала растёт медленно, что соответствует участку 0-1 на ВАХ. В этом режиме тиристор можно считать запертым, так как сопротивление перехода J2 всё ещё очень велико. По мере увеличения напряжения на тиристоре снижается доля напряжения, падающего на J2, и быстрее возрастают напряжения на J1 и J3, что вызывает дальнейшее увеличение тока через тиристор и усиление инжекции неосновных носителей в область J2. При некотором значении напряжения (порядка десятков или сотен вольт), называется напряжением переключения V BF (точка 1 на ВАХ), процесс приобретает лавинообразный характер, тиристор переходит в состояние с высокой проводимостью (включается), и в нём устанавливается ток, определяемый напряжением источника и сопротивлением внешней цепи.

Двухтранзисторная модель

Для объяснения характеристик прибора в режиме прямого запирания используется двухтранзисторная модель. Тиристор можно рассматривать как соединение p-n-p транзистора с n-p-n транзистором, причём коллектор каждого из них соединён с базой другого, как показано на рис. 4 для триодного тиристора. Центральный переход действует как коллектор дырок , инжектируемых переходом J1, и электронов , инжектируемых переходом J3. Взаимосвязь между токами эмиттера I E , коллектора I C и базы I B и статическим коэффициентом усиления по току α 1 p-n-p транзистора также приведена на рис. 4, где I Со - обратный ток насыщения перехода коллектор-база.

Рис. 4. Двухтранзисторная модель триодного тиристора, соединение транзисторов и соотношение токов в p-n-p транзисторе.

Аналогичные соотношения можно получить для n-p-n транзистора при изменении направления токов на противоположное. Из рис. 4 следует, что коллекторный ток n-p-n транзистора является одновременно базовым током p-n-p транзистора. Аналогично коллекторный ток p-n-p транзистора и управляющий ток I g втекают в базу n-p-n транзистора. В результате, когда общий коэффициент усиления в замкнутой петле превысит 1, оказывается возможным регенеративный процесс.

Ток базы p-n-p транзистора равен I B1 = (1 - α 1)I A - I Co1 . Этот ток также протекает через коллектор n-p-n транзистора. Ток коллектора n-p-n транзистора с коэффициентом усиления α 2 равен I C2 = α 2 I K + I Co2 .

Приравняв I B1 и I C2 , получим (1 - α 1)I A - I Co1 = α 2 I K + I Co2 . Так как I K = I A + I g , то

Рис. 5. Энергетическая зонная диаграмма в режиме прямого смещения: состояние равновесия, режим прямого запирания и режим прямой проводимости.

Это уравнение описывает статическую характеристику прибора в диапазоне напряжений вплоть до пробоя. После пробоя прибор работает как p-i-n-диод. Отметим, что все слагаемые в числителе правой части уравнения малы, следовательно, пока член α 1 + α 2 < 1, ток I A мал. (Коэффициенты α1 и α2 сами зависят от I A и обычно растут с увеличением тока) Если α1 + α2 = 1, то знаменатель дроби обращается в нуль и происходит прямой пробой (или включение тиристора). Следует отметить, что если полярность напряжения между анодом и катодом сменить на обратную, то переходы J1 и J3 будут смещены в обратном направлении, а J2 - в прямом. При таких условиях пробой не происходит, так как в качестве эмиттера работает только центральный переход и регенеративный процесс становится невозможным.

Ширина обеднённых слоёв и энергетические зонные диаграммы в равновесии, в режимах прямого запирания и прямой проводимости показаны на рис. 5. В равновесии обеднённая область каждого перехода и контактный потенциал определяются профилем распределения примесей. Когда к аноду приложено положительное напряжение, переход J2 стремится сместиться в обратном направлении, а переходы J1 и J3 - в прямом. Падение напряжения между анодом и катодом равно алгебраической сумме падений напряжения на переходах: V AK = V 1 + V 2 + V 3 . По мере повышения напряжения возрастает ток через прибор и, следовательно, увеличиваются α1 и α2. Благодаря регенеративному характеру этих процессов прибор в конце концов перейдёт в открытое состояние. После включения тиристора протекающий через него ток должен быть ограничен внешним сопротивлением нагрузки, в противном случае при достаточно высоком напряжении тиристор выйдет из строя. Во включенном состоянии переход J2 смещён в прямом направлении (рис. 5, в), и падение напряжения V AK = (V 1 - |V 2 | + V 3) приблизительно равно сумме напряжения на одном прямосмещенном переходе и напряжения на насыщенном, транзисторе.

Режим прямой проводимости

Когда тиристор находится во включенном состоянии, все три перехода смещены в прямом направлении. Дырки инжектируются из области p1, а электроны - из области n2, и структура n1-p2-n2 ведёт себя аналогично насыщенному транзистору с удалённым диодным контактом к области n1. Следовательно, прибор в целом аналогичен p-i-n (p + -i-n +)-диоду…

Классификация тиристоров

  • тиристор диодный (доп. название "динистор") - тиристор, имеющий два вывода
    • тиристор диодный, не проводящий в обратном направлении
    • тиристор диодный, проводящий в обратном направлении
    • тиристор диодный симметричный (доп. название "диак")
  • тиристор триодный (доп. название "тринистор") - тиристор, имеющий три вывода
    • тиристор триодный, не проводящий в обратном направлении (доп. название "тиристор")
    • тиристор триодный, проводящий в обратном направлении (доп. название "тиристор-диод")
    • тиристор триодный симметричный (доп. название "триак", неоф. название "симистор")
    • тиристор триодный асимметричный
    • запираемый тиристор (доп. название "тиристор триодный выключаемый")

Отличие динистора от тринистора

Принципиальных различий между динистором и тринистором нет, однако если открытие динистора происходит при достижении между выводами анода и катода определённого напряжения, зависящего от типа данного динистора, то в тринисторе напряжение открытия может быть специально снижено, путём подачи импульса тока определённой длительности и величины на его управляющий электрод при положительной разности потенциалов между анодом и катодом, и конструктивно тринистор отличается только наличием управляющего электрода. Тринисторы являются наиболее распространёнными приборами из «тиристорного» семейства.

Отличие тиристора триодного от запираемого тиристора

Переключение в закрытое состояние обычных тиристоров производят либо снижением тока через тиристор до значения I h , либо изменением полярности напряжения между катодом и анодом.

Запираемые тиристоры, в отличие от обычных тиристоров, под воздействием тока управляющего электрода могут переходить из закрытого состояния в открытое состояние, и наоборот. Чтобы закрыть запираемый тиристор, необходимо через управляющий электрод пропустить ток противоположной полярности, чем полярность, которая вызывала его открытие.

Симистор

Симистор (симметричный тиристор) представляет собой полупроводниковый прибор, по своей структуре является аналогом встречно-параллельного включения двух тиристоров. Способен пропускать электрический ток в обоих направлениях.

Характеристики тиристоров

Современные тиристоры изготовляют на токи от 1 мА до 10 кА; на напряжения от нескольких В до нескольких кВ; скорость нарастания в них прямого тока достигает 10 9 А/с, напряжения - 10 9 В/с, время включения составляет величины от нескольких десятых долей до нескольких десятков мкс, время выключения - от нескольких единиц до нескольких сотен мкс; КПД достигает 99 %.

Применение

  • Управляемые выпрямители
  • Преобразователи (инверторы)
  • Регуляторы мощности (диммеры)

См. также

  • CDI (Capacitor Discharge Ignition)

Примечания

Литература

  • ГОСТ 15133-77.
  • Кублановский. Я. С. Тиристорные устройства. - 2-е изд., перераб. и доп. - М.: Радио и связь, 1987. - 112 с.: ил. - (Массовая радиобиблиотека. Вып. 1104).

Ссылки

  • Тиристоры: принцип действия, конструкции, типы и способы включения
  • Управление тиристорами и симисторами через микроконтроллер или цифровую схему
  • Преобразовательные устройства в системах электроснабжения
  • Рогачёв К.Д. Современные силовые запираемые тиристоры .
  • Отечественные Аналоги Импортных Тиристоров
  • Справочники по тиристорам и аналогам,Замена тиристоров,замена диодов.Стабилитроны
Пассивные твердотельные Резистор · Переменный резистор · Подстроечный резистор · Варистор · Конденсатор · Переменный конденсатор · Подстроечный конденсатор · Катушка индуктивности · Кварцевый резонатор · Предохранитель · Самовосстанавливающийся предохранитель · Трансформатор
Активные твердотельные Диод · Светодиод · Фотодиод · Полупроводниковый лазер · Диод Шоттки · Стабилитрон · Стабистор · Варикап · Вариконд · Диодный мост · Лавинно-пролётный диод · Туннельный диод · Диод Ганна
Транзистор · Биполярный транзистор · Полевой транзистор ·