С миру по нитке

Параметрические измерительные преобразователи. Функциональные преобразователи: измерительные, параметрические, генераторные. г) ионизационных преобразователей

Основными элементами большинства применяемых средств измерений являются первичные измерительные преобразователи, назначение которых - преобразование измеряемой физической величины (входная величина) в сигнал измерительной информации (выходная величина), как правило, электрический, удобный для дальнейшей обработки.

Первичные преобразователи подразделяются на параметрические и генераторные. В параметрических преобразователях выходная величина представляет собой изменение какого-либо параметра электрической цепи {сопротивление, индуктивность, емкость и т.д.), в генераторных выходная величина - ЭДС, электрический ток или заряд, возникающие вследствие энергии измеряемой величины.

Существует большой класс измерительных преобразователей, у которых входными величинами являются давление, сила или крутящий момент. Как правило, в этих преобразователях входная величина воздействует на упругий элемент и вызывает его деформацию, которая затем преобразуется или в сигнал, воспринимаемый наблюдателями (механические показывающие приборы), или в электрический сигнал.

В значительной степени инерционные свойства преобразователя определяются частотой собственных колебаний упругого элемента: чем она выше, тем менее инерционным является преобразователь. Максимальное значение этих частот при использовании конструкционных сплавов составляет 50...100 кГц. Для изготовления упругих элементов особо точных преобразователей применяются кристаллические материалы (кварц, сапфир, кремний).

Резистивные преобразователи - это параметрические преобразователи, выходной величиной которых является изменение электрического сопротивления, которое может вызываться воздействием разнообразных по физической природе величин - механических, тепловых, световых, магнитных и др.

Потенциометрический преобразователь представляет собой реостат, движок которого перемешается под воздействием измеряемой величины (входная величина). Выходной величиной является сопротивление.



Потенциометрические преобразователи применяются для измерения положения регулирующих органов (линейных и угловых), в уровнемерах, в датчиках (например, давления) для измерения деформации упругого чувствительного элемента. Достоинство потенциометрических преобразователей - большой выходной сигнал, стабильность метрологических характеристик, высокая точность, незначительная температурная погрешность. Основной недостаток - узкий частотный диапазон (несколько десятков герц).

Работа тензорезисторов основана на изменении сопротивления проводников и полупроводников при их механической деформации (тензоэффект). Проволочный (или фольговый) тензорезистор представляет собой зигзагообразную изогнутую тонкую проволоку диаметром 0,02...0,05 мм или ленту из фольги толщиной 4...12 мкм (решетка), которая наклеивается на подложку из электроизоляционного материала. К концам решетки присоединяются выводные медные проводники. Преобразователи, будучи приклеенными к детали, воспринимают деформацию ее поверхностного слоя.

При измерениях деформаций и напряжений в деталях и конструкциях, как правило, отсутствует возможность градуировки измерительных каналов и погрешность измерений составляет 2...10 %. В случае применения тензорезисторов в первичных измерительных преобразователях погрешность может быть снижена до 0.5...1 % путем градуировки. Основной недостаток тензорезисторов данного типа - малый выходной сигнал.

Для измерений малых деформаций упругих чувствительных элементов измерительных преобразователей используются полупроводниковые тензорезисторы, выращенные непосредственно на упругом элементе, выполненном из кремния или сапфира.

При измерениях динамических деформаций с частотой до 5 кГц должны применяться проволочные или фольговые тензорезисторы с базой не более 10 мм, причем максимальная деформация для них не должна превышать 0,1 % (0,02 % для полупроводниковых).

Действие пьезоэлектрических преобразователей основано на возникновении электрических зарядов при деформации кристалла (прямой пьезоэффект).

Пьезоэлектрические преобразователи обеспечивают возможность измерения быстропеременных величин (собственная частота преобразователей достигает 200 кГц), отличаются высокой надежностью и имеют малые габаритные размеры и массу. Основной недостаток - трудность при измерении медленно изменяющихся величин и при проведении статической градуировки из-за утечек электричества с поверхности кристалла.

Электростатический преобразователь схематично можно представить в виде двух электродов (пластин) площадью F, параллельно расположенных на расстоянии d в среде с диэлектрической проницаемостью е.

Обычно эти преобразователи устроены таким образом, что их выходной величиной является изменение емкости (в этом случае они называются емкостными), а входными величинами могут быть механические перемещения, изменяющие зазор d или площадь F, или изменение диэлектрической проницаемости среды e вследствие изменения ее температуры, химического состава и т.п.

Кроме емкости, в качестве выходной величины электростатических преобразователей используется ЭДС. генерируемая при взаимном перемещении электродов, находящихся в электрическим поле (генераторный режим). Например, в генераторном режиме работают конденсаторные микрофоны, преобразующие энергию акустических колебаний в электрическую.

Достоинством электростатических преобразователей является отсутствие шумов и самонагрева. Однако с целью защиты от наводок соединительные линии и сами преобразователи должны тщательно экранироваться.

У индуктивных преобразователей выходной величиной является изменение индуктивности, а входными величинами могут быть перемещения отдельных частей преобразователя, приводящие к изменению сопротивления магнитной цепи, взаимоиндукции между контурами и т.д.

Достоинствами преобразователей являются: линейность характеристики, малая зависимость выходного сигнала от внешних воздействий, ударов и вибраций; высокая чувствительность. Недостатки - малый выходной сигнал и необходимость в питающем напряжении повышенной частоты.

Принцип действия вибрационно-частотных преобразователей основан на изменении частоты собственных колебаний струны или тонкой перемычки при изменении ее натяжения.

Входной величиной преобразователя является механическое усилие (или величины, преобразуемые в усилие. - давление, крутящий момент и др.). которое воспринимается упругим элементом, связанным с перемычкой.

Применение вибрационно-частотных преобразователей возможно при измерении постоянных или медленно изменяющихся во времени величин (частота не более 100...150 Гц). Они отличаются высокой точностью, а частотный сигнал - повышенной помехоустойчивостью.

В оптоэлектрических преобразователях используются закономерности распространения и взаимодействия с веществом электромагнитных волн оптического диапазона.

Основным элементом преобразователей являются приемники излучения. Простейшие из них - тепловые преобразователи - предназначены для преобразования всей падающей на них энергии излучения в температуру (интегральный преобразователь).

В качестве приемников излучения используются также различные фотоэлектрические преобразователи, в которых используется явление фотоэффекта. Фотоэлектрические преобразователи являются селективными, т.е. они обладают высокой чувствительностью в сравнительно узком диапазоне длин волн. Например, внешний фотоэффект (испускание электронов под действием света) используется в вакуумных и газонаполненных фотоэлементах и фотоумножителях.

Вакуумный фотоэлемент представляет собой стеклянный баллон, на внутренней поверхности которого нанесен слой фоточувствительного материала, образующий катод. Анод выполняется в виде кольца или сетки из металлической проволоки. При освещении катода возникает ток фотоэмиссии. Выходные токи этих элементов не превышают нескольких микроампер. В газонаполненных фотоэлементах (для заполнения применяются инертные газы Ne, Аr, Кr, Хе) выходной ток увеличивается в 5...7 раз из-за ионизации газа фотоэлектронами.

В фотоумножителях усиление первичного фототока происходит вследствие вторичной электронной эмиссии - "выбивания" электронов из вторичных катодов (эмиттеров), установленных между катодом и анодом. Общий коэффициент усиления в многокаскадных фотоумножителях может достигать сотен тысяч, а выходной ток - 1 мА. Фотоумножители и вакуумные, элементы могут использоваться при измерениях быстро изменяющихся величин, так как явление фотоэмиссии практически безынерционно.

Измерение давлений

Для измерения полного или статического давления в поток помешают специальные приемники с приемными отверстиями, которые трубками небольшого диаметра (пневмомагистралями) соединяются с соответствующими первичными преобразователями или измерительными приборами.

Простейшим приемником полного давления является цилиндрическая трубка с перпендикулярно срезанным торцом, изогнутая под прямым углом и ориентированная навстречу потоку. Для уменьшения чувствительности приемника к направлению потока (например, при измерениях в потоках с небольшой закруткой) применяются специальные конструкции приемников. Например, приемники полного давления с протоком (рис. 3.3) характеризуются погрешностью измерения не более 1 % при углах скоса до 45° при числе М<0,8.

При измерении статических давлений вблизи стенок каналов приемные отверстия диаметром 0,5...1 мм выполняются непосредственно в стенках (дренажные отверстия). В месте дренажа не должно быть неровностей, а кромки отверстий не должны иметь заусенцев. Этот вид измерений весьма распространен при исследовании течений в трубах и каналах в камерах сгорания, диффузорах и соплах.



Рис. 3.3. Схема приемника полного давления:

Рис. 3.4. Схема приемника статического давления:

а - клиновидный;

б - дисковый;

в - Г-образный для измерений при М£1,5

Для измерений статических давлений в потоке применяются клиновидные и дисковые приемники, а также приемники в виде трубок Г-образной формы (рис. 3.4) с приемными отверстиями, расположенными на боковой поверхности. Указанные приемники хорошо работают при дозвуковых и небольших сверхзвуковых скоростях.

Для исследования распределения давлений в поперечных сечениях каналов получили распространение гребенки полного и статического давлений, содержащие несколько приемников, или комбинированные гребенки, имеющие приемник как полного, так и статического давлений. При измерениях в потоках со сложной структурой течения (камеры сгорания, межлопаточные каналы турбомашин) применяются ориентируемые и неориентируемые приемники давления, позволяющие определить значения полного и статического давлений и направление вектора скорости. Первые из них предназначены для измерений в двумерных потоках, и их конструкция позволяет путем поворота устанавливать приемник в определенном положении относительно вектора местной скорости потока.

Неориентируемые приемники снабжены несколькими приемными отверстиями (5...7), которые выполнены в стенках цилиндра или сферы небольшого диаметра (3...10 мм) или располагаются в концах срезанных под определенными углами трубок (диаметр 0,5...2 мм), объединенных в единый конструктивный узел (рис. 3.5). При обтекании приемника потоком вокруг него формируется определенное распределение давлений. Используя измеренные с помощью приемных отверстий значения давлений и результаты предварительной градуировки приемника в аэродинамической трубе, можно определить значения полного и статического давлений и местное направление скорости потока.

При сверхзвуковых скоростях течений перед приемниками давлений возникают скачки уплотнения, и это необходимо учитывать при обработке результатов измерений. Например, по измеренным значениям статического давления в потоке р и полного за прямым скачком уплотнения р*" можно определить с помощью формулы Релея число М, а затем и значение полного давления в потоке:

При испытаниях двигателей и их элементов для измерения давлений применяются различные приборы (стрелочные деформационные, жидкостные, групповые регистрирующие манометры), позволяющие оператору контролировать режимы работы экспериментальных объектов. В информационно-измерительных системах используются разнообразные первичные преобразователи. Как правило, давление, точнее разность давлений (например, между измеряемым и атмосферным, между полным и статическим и т.д.), воздействует на упругий чувствительный элемент (мембрану), деформация которого преобразуется в электрический сигнал. Наиболее часто для этого применяются индуктивные и тензочувствительные преобразователи при измерении постоянных и медленно изменяющихся давлений и пьезокристаллические и индуктивные преобразователи при измерении переменных давлений.

Рис. 3.5. Схема пятиканального приемника давлений:

С x , С y , С z - составляющие вектора скорости; р i - измеряемые значения давления

В качестве примера на рис. 3.6 представлена схема преобразователя «Сапфир-22ДД». Преобразователи этого типа выпускаются в нескольких модификациях, предназначенных для измерения избыточного давления, разности давлений, вакуума, абсолютного давления, избыточного давления и вакуума в различных диапазонах. Упругий чувствительный элемент представляет собой металлическую мембрану 2, к которой сверху припаяна сапфировая мембрана с напыленными кремниевыми тензорезисторами. Измеряемая разность давлений воздействует на блок, состоящий из двух диафрагм 5. При смещении их центра усилие с помощью тяги 4 передается на рычаг 3, что приводит к деформации мембраны 2 с тензорезисторами. Электрический сигнал от тензорезисторов поступает в электронный блок 4, где преобразуется в унифицированный сигнал - постоянный ток 0...5 или 0...20 мА. Электрическое питание преобразователя осуществляется от источника постоянного тока напряжением 36 В.


При измерениях переменных (например, пульсирующих) давлений целесообразно максимальное приближение первичного преобразователя к месту измерения, так как наличие пневмомагистрали вносит существенные изменения в амплитудно-частотную характеристику системы измерений. Предельным в этом смысле является бездренажный метод, при котором миниатюрные преобразователи давления крепятся заподлицо с поверхностью, обтекаемой потоком (стенкой канала, лопаткой компрессора и т.д.). Известны преобразователи, имеющие высоту 1,6 мм и диаметр мембраны 5 мм. Используются также системы с приемниками давления и волноводами (l~100 мм) (метод вынесенных приемников давления), в которых для улучшения динамических

характеристик используются корректирующие акустические и электрические звенья.

При большом числе точек измерения в измерительных системах могут применяться специальные быстродействующие пневмокоммутаторы, которые обеспечивают поочередное подключение к одному преобразователю нескольких десятков точек измерения.

Для обеспечения высокой точности необходимо в рабочих условиях периодически контролировать средства измерения давления с помощью автоматических задатчиков.


Измерение температур

Для измерения температур применяются разнообразные средства измерений. Термоэлектрический термометр (термопара) представляет собой два проводника из различных материалов, соединенные (сваренные или спаянные) между собой концами (спаи). Если температуры спаев будут различны, то в цепи потечет ток под действием термоэлектродвижущей силы, значение которой зависит от материала проводников и от температур спаев. При измерениях, как правило, один из спаев термостатируется (для этого применяется тающий лед). Тогда ЭДС термопары будет однозначно связана с температурой «горячего» спая.

В термоэлектрический контур можно включить разнородные проводники. При этом результирующая ЭДС не изменится, если все места соединений будут находиться при одинаковой температуре. На этом свойстве основано применение так называемых удлинительных проводов (рис. 3.7), которые присоединяются к термоэлектродам ограниченной длины, и таким образом достигается экономия дорогостоящих материалов. При этом необходимо обеспечить равенство температур в местах присоединения удлинительных проводов (Т с) и термоэлектрическую идентичность их основной термопаре в диапазоне возможного изменения температур Т с и Т 0 (обычно не более 0...200°С). При практическом использовании термопар возможны случаи, когда температура Т 0 отлична от 0°С. Тогда для учета этого обстоятельства ЭДС термопары следует определить как E=Е изм +DE(T 0) и по градуировочной зависимости найти значение температуры. Здесь Е изм - измеренное значение ЭДС; DE(T 0) – значение ЭДС, соответствующее величине T 0 и определенное по градуировочной завиcимости. Градуировочные зависимости для термопар получают при температуре «холодных» спаев Т 0 , равной 0°С. Эти зависимости несколько отличаются от линейных. В качестве примера на рис. 3.8 приведена градуировочная зависимость для термопары платинородий-платина.

Некоторые характеристики наиболее распространенных термопар даны в табл. 3.1.

На практике наиболее распространены термопары с диаметром электродов 0,2...0,5 мм. Электроизоляция электродов достигается путем обмотки их асбестовой или кремнеземной нитью последующей пропиткой термостойким лаком, помещением термоэлектродов в керамические трубки или нанизыванием на них кусочков этих трубок («бусы»). Получили распространение термопары кабельного типа, представляющие собой два термоэлектрода, помещенные в тонкостенную оболочку, изготовленную из жаропрочной стали. Для изоляции термоэлектродов внутренняя полость оболочки набивается порошком MgO или Al 2 О 3 . Наружный диаметр оболочки - 0,5...6 мм.

Таблица 3.1

Для правильного измерения температуры конструктивных элементов термопары должны заделываться таким образом, чтобы горячий спай и термоэлектроды вблизи него не выступали над поверхностью и чтобы условия теплоотдачи от термометрируемой поверхности не нарушались из-за установки термопары. Для уменьшения погрешности измерений вследствие оттока (или притока) тепла от горячего спая по термоэлектродам за счет теплопроводности термоэлектроды на некотором расстоянии вблизи спая (7...10 мм) должны прокладываться примерно по изотермам. Схема заделки термопары, удовлетворяющей указанным требованиям, приведена на рис. 3.9. В детали выполнена канавка глубиной 0,7 мм, в которую укладываются спай и прилегающие к нему термоэлектроды; спай приваривается к поверхности контактной сваркой; канавка закрывается фольгой толщиной 0,2...0,3 мм.

Вывод термоэлектродов из внутренних полостей двигателя или его узлов осуществляется через штуцера. При этом необходимо следить за тем, чтобы термоэлектроды не слишком сильно нарушали структуру течения и не повреждалась их изоляция из-за трения друг о друга и об острые кромки конструкции.

При измерении температур вращающихся элементов показания термопар выводятся с помощью щеточных или ртутных токосъемников. Разрабатываются также бесконтактные токосъемники.

Схемы термопар, применяемых для измерения температуры потока газа, приведены на рис. 3.10. Горячий спай 1 представляет собой сферу диаметром d 0 (термоэлектроды могут также свариваться встык); термоэлектроды 2 вблизи спая закрепляются в изолирующей двухканальной керамической трубке 3, а затем выводятся из корпуса 4. На рисунке корпус 4 показан водоохлаждаемым (охлаждение необходимо при измерениях температур, превышающих 1300...1500 К), подвод и отвод охлаждающей воды осуществляются через штуцера 5.

При высоких значениях температуры газа возникают методические погрешности, обусловленные отводом тепла от спая вследствие теплопроводности по термоэлектродам к корпусу термопары и излучением в окружающую среду. Потери тепла из-за теплопроводности практически полностью можно устранить, обеспечив вылет изолирующей трубки, равный 3...5 ее диаметрам.

Для уменьшения отвода тепла излучением применяется экранирование термопар (рис. 3.10, б, в). Этим обеспечивается также защита спая от повреждений, а торможение потока внутри экрана способствует повышению коэффициента восстановления температуры при измерениях в высокоскоростных потоках.

Разработан также метод определения температуры газа по показаниям двух термопар, имеющих термоэлектроды различного


Рис. 3.9. Схема заделки термопары при измерении температуры элементов камер сгорания

Рис. 3.10. Схемы термопар для измерения температуры газа:

а - термопара с открытым спаем: б, в - экранированные термопары; г - двухспайная термопара; 1 - спай: 2 – термоэлектроды; 3 - керамическая трубка; 4 - корпус; 5 - штуцера для подвода и отвода воды


диаметра (рис. 3.10, г), позволяющий учесть отвод тепла излучением.

От конструктивного выполнения зависит инерционность термопар. Так, постоянная времени изменяется от 1...2 с для термопар с открытым спаем, до 3...5 с для экранированных термопар.

При исследовании полей температур (например, за турбиной, камерой сгорания и т.д.) применяются гребенки термопар, причем в ряде случаев они устанавливаются во вращающихся турелях, что позволяет достаточно подробно определять распределение температур во всем поперечном сечении.

Действие термометра сопротивления основано на изменении сопротивления проводника при изменении температуры. В качестве электросопротивления применяется проволока диаметром 0,05... 0,1 мм, выполненная из меди (t=-50...+150°С), никеля (t=-50...200°С) или платины (t=-200...500°С).

Проволока наматывается на каркас и помещается в чехол. Термометры сопротивления обладают высокой точностью и надежностью, однако они характеризуются большой инерционностью и не пригодны для измерения локальных температур. Термометры сопротивления применяются для измерений температуры воздуха на входе в двигатель, температур топлив, масел и т.д.

В жидкостных термометрах используется свойство теплового расширения жидкости. В качестве рабочих жидкостей применяются ртуть (t=-30...+700°C), спирт (t=-100...+75°C) и др. Жидкостные термометры используются при измерениях температуры жидких и газообразных сред в лабораторных условиях, а также при градуировке других приборов.

Оптические методы измерения температуры основаны на закономерностях теплового излучения нагретых тел. На практике могут быть реализованы три типа пирометров: яркостные пирометры, работа которых основана на изменении теплового излучения тела с температурой при некоторой фиксированной длине волн; цветовые пирометры, использующие изменение с температурой распределения энергии в пределах некоторого участка спектра излучения; радиационные пирометры, основанные на зависимости от температуры общего количества излучаемой телом энергии.

В настоящее время при испытаниях двигателей для измерений температур элементов конструкции нашли применение яркостные пирометры, созданные на базе фотоэлектрических приемников лучистой энергии. В качестве примера схема установки пирометра при термометрировании лопаток турбины на работающем двигателе представлена на рис. 32.11. С помощью линзы 2 «поле зрения» первичного преобразователя ограничено небольшим (5...6 мм) участком. Пирометр «осматривает» кромку и часть спинки каждой лопатки. Защитное стекло 1, выполненное из сапфира, предохраняет линзу от загрязнения и перегрева. Сигнал по световоду 3 передается к фотодетектору. Благодаря малой инерционности пирометр позволяет контролировать температуру каждой лопатки.

Для измерения температур конструктивных элементов двигателя могут применяться цветовые индикаторы температуры (термокраски или термолаки) - сложные вещества, которые при достижении определенной температуры (температура перехода) резко изменяют свой цвет из-за химического взаимодействия компонентов или происходящих в них фазовых переходов.

Рис. 3.11. Схема установки пирометра на двигателе:

(а) (1 - подвод обдувочного воздуха; 2 - первичный преобразователь) и схема первичного преобразователя

(б) (1 - защитное стекло; 2 - линза; 3 - световод)

Термокраски и термолаки, будучи нанесенными на твердую поверхность, после высыхания затвердевают и образуют тонкую пленку, которая способна изменять свой цвет при температуре перехода. Например, термокраска ТП-560 белого цвета при достижении t=560 °С становится бесцветной.

С помощью термоиндикаторов можно обнаружить зоны перегрева в элементах двигателя, в том числе и в труднодоступных местах. Трудоемкость измерений невелика. Однако их применение ограничено, так как не всегда можно установить, на каком режиме была достигнута максимальная температура. Кроме того, окраска термоиндикатора зависит от времени воздействия температуры. Поэтому термоиндикаторы, как правило, не могут заменить других методов измерений (например, с помощью термопар), но позволяют получить дополнительную информацию о тепловом состоянии исследуемого объекта.

Тема 18

Измерительные преобразователи (датчики)

Ни одна система управления не может работать без информации о состоянии объекта управления и его реакции на управляющее воздействие. Элементом систем, обеспечивающим получение такой информации, является измерительный преобразователь-датчик .

Число типов датчиков значительно превосходит число измеряемых величин, так как одну и ту же физическую величину можно измерять различными методами и датчиками разных конструкций.

Для большинства датчиков характерно измерение электрическими методами не только электрических и магнитных, но и других физических величин. Такой подход обусловлен достоинствами электрических измерений, в виду того, что электрические сигналы можно просто и быстро передавать на большие расстояния, электрические величины легко, быстро и точно преобразуются в цифровой код, позволяют обеспечить высокую точность и чувствительность.

В качестве классификационных признаков датчиков можно принять многие характеристики: вид функции преобразования; род входной и выходной величины; принцип действия; конструктивное исполнение.

По виду используемой энергии датчики можно подразделить на электрические, механические, пневматические и гидравлические. В зависимости от вида выходного сигнала: аналоговые, дискретные, релейные, с естественным или унифицированным выходным сигналом.

По характеру преобразования входной величины в выходную: параметрические, генераторные, частотные, фазовые.

По виду измеряемой физической величины: линейных и угловых перемещениях, давления, температуры, концентрации веществ и т.д.

Принцип действия параметрических преобразователей заключается в преобразовании неэлектрических входных величин в параметры электрических цепей: сопротивление R , индуктивность L , емкость С , взаимоиндуктивность М . Для питания этих преобразователей требуются внешние источники. К таким датчикам относятся: резистивные, индуктивные, трансформаторные, емкостные преобразователи.

Генераторные преобразователи преобразуют входные величины в ЭДС. Они не требуют энергии дополнительных источников питания.

Это индукционные, термоэлектрические, пьезоэлектрические, фотоэлектрические преобразователи.

Фазовые и частотные преобразователи могут быть как параметрическими, так и генераторными.


Реостатные – выполнены в виде реостата, подвижной контакт которого перемещается под воздействием входной измеряемой величины. Чаще всего реостатный датчик включается в измерительную систему по схеме потенциометра, их иногда называют потенциометрическими датчиками.

Выходной величиной датчика является электрическое сопротивление функционально связанное с положением подвижного контакта. Такие датчики служат для преобразования угловых или нелинейных перемещений в соответствующее изменение сопротивления, тока, напряжения.



Они также могут быть использованы для измерения давления, расхода, уровня. Их часто используют также в качестве промежуточных преобразователей неэлектрических величин в электрические.

В устройствах автоматики широко применяются проволочные реостатные преобразователи, которые отличаются высокой точностью и стабильностью функции преобразования, имеют малый температурный коэффициент сопротивления (ТКС).

К недостаткам относятся низкая разрешающая способность, сравнительно невысокое сопротивление (до десятков кОм), ограниченная возможность применения на переменном токе, обусловленная остаточными индуктивностью и емкостью намотки.

Обмотку выполняют изолированным проводом виток к витку или с заданным шагом. В качестве провода применяют константан, манганин.

Датчик данного типа не реагируют на знак входного сигнала, работают как на постоянном, так и на переменном токе.

Тензорезисторы . В основе их работы лежит тензоэффект, заключающийся в изменении активного сопротивления проводниковых и полупроводниковых материалов при их механической деформации.

Характеристикой тензоэффекта материала служит коэффициент тензочувствительности К т, определяемый как отношение изменения сопротивления к изменению длины проводника

Константан – К т = 2

Нихром – К т = 2,2

Хром – К т = 2,5

Тензорезисторы используют для измерения давления жидкости и газов, при измерении упругих деформаций материалов: давлений изгибов, скручивания.

В качестве тензорезистивного материала можно использовать металлы с малым ТКС: манганин, константан, нихром, ртуть, высокотемпературные сплавы, полупроводниковые материалы: германий, кремний. Наибольшее распространение получили тензорезисторы из металла. Они разделяются на проволочные и фольговые, последние более совершенны.

Угольные преобразователи. Их принцип действия основан на изменении контактного сопротивления между частицами угля при изменении давления. Их применяют для измерения усилий, давлений, малых перемещений. Различают угольные столбики и тензолиты.

Первые представляют собой набор из 10-15 отшлифованных шайб, изготовленных из электродных углей.

Характеристика угольного преобразователя нелинейна, он имеет переменную чувствительность. Нестабильны в работе, характеристики зависят от температуры и влажности окружающей среды, качества подготовки поверхностей.

Вторые имеют малые размеры и массу. Их применяют для измерения быстроменяющихся и ударных напряжений в движущихся деталях небольшого размера, при этом они работают как на растяжение, так и на сжатие. Коэффициент чувствительности тензолитовых преобразователей больше, чем у тензорезисторов, и составляет К = 15 ¸ 20.

Она выполняется в виде полосок, состоящих из смеси графита, сажи, бакелитового лака и других компонентов. Эти полоски наклеиваются на испытуемую деталь.

Резистивные преобразователи несмотря на присущие им недостатки до настоящего времени находят широкое применение.

Емкостные преобразователи . Принцип действия основан на изменении емкости конденсатора под воздейтсивем входной преобразуемой величины

где e – относительная диэлектрическая проницаемость диэлектрика; e 0 – диэлектрическая проницаемость вакуума; S – площадь пластины; d – толщина диэлектрика или расстояния между пластинами.

Емкостные датчики используют для измерения угловых и линейных перемещений, линейных размеров, уровня, усилий, влажности концентрации и др.

В емкостных плоскопараллельных датчиках изменяется плоскость перекрытия S (перемененная площадь перекрытия) статическая характеристика линейна.

В емкостных преобразователях с переменным воздушным зазором характеристика нелинейна.

Преобразователи и изменением диэлектрической проводимости среды между электродами широко используются для измерения уровня жидких и сыпучих веществ, анализа состава и концентрации веществ в химической, нефтеперерабатывающей промышленности, для счета изделий, охранной сигнализации. Они имеют линейную статическую характеристику.

Емкость измерительных преобразователей в зависимости от конструктивных особенностей колеблется от десятых долей до нескольких тысяч пикофарад, что приводит к необходимости использовать для питания датчиков напряжения повышений частоты Гц.

Это существенный недостаток подобных преобразователей.

Диэлектрические свойства среды иногда изменяются под воздействием температуры или механических усилий. Эти эффекты также используются для создания соответствующих измерительных преобразователей.

Изменение проницаемости под действием температуры описывается выражением

,

где e т – диэлектрическая проницаемость материала при температуре Т ; e 0 – диэлектрическая проницаемость при температуре Т 0 ; a - температурный коэффициент; .

Аналогичный вид имеет и зависимость e от приложенного к нему усилия Р

,

где – чувствительность материала к относительному изменению диэлектрической проницаемости

.

Начальная емкость преобразователей тем больше, чем меньше зазор d между электродами. Однако уменьшение зазора ограничивается диэлектрической прочностью межэлектродной среды и наличием силы электростатического притяжения пластин.

Погрешности емкостных преобразователей в основном определяются влиянием температуры и влажности на геометрические размеры и диэлектрическую проницаемость среды. Они являются практически безинерционными элементами.

К достоинствам относятся: простота конструкции, малые размеры и масса, высокая чувствительность, большая разрешающая способность при малом уровне входного сигнала, отсутствие подвижных токосъемных контактов, высокое быстродействие, возможность получения необходимого закона преобразования за счет выбора соответствующих конструктивных параметров, отсутствие влияния входной цепи на измерительную.

Реактивное сопротивление нагрузки выбирают равным по значению и обратным по знаку внутреннему сопротивлению датчика.

Общие сведения.

В параметрических преобразователях выходной величиной является параметр электрической цепи . При использовании параметрических преобразователей необходим дополнительный источник питания, энергия которого используется для образования выходного сигнала преобразователя.

Реостатные преобразователи.

Реостатные преобразователи основаны на изменении электрического сопротивления проводника под влиянием входной величины - перемещения. Реостатный преобразователь представляет собой реостат, щетка (подвижный контакт) которого перемещается под воздействием измеряемой неэлектрической величины. На рис. 11-5 схематически показаны некоторые варианты конструкций реостатных преобразователей для углового (рис. 11-5, а) и линейного (рис. 11-5, б и в) перемещений. Преобразователь состоит из обмотки, нанесенной на каркас, и щетки. Для изготовления каркасов применяются диэлектрики и металлы. Проволоку для обмотки выполняют из сплавов (сплав платины с иридием, константан, нихром и фехраль). Для обмотки обычно используют изолированный провод. После изготовления обмотки изоляцию провода счищают в местах соприкосновения его со щеткой. Щетку преобразователя выполняют либо из проволок, либо из плоских пружинящих полосок, причем

Рис. 11-5. Реостатные преобразователи для угловых (а), линейных (б) перемещений и для функционального преобразования линейных перемещений (в)

используют как чистые металлы (платина, серебро), так и сплавы (платина с иридием, фосфористая бронза и т. д.).

Габариты преобразователя определяются значением измеряемого перемещения, сопротивлением обмотки и мощностью, выделяемой в обмотке.

Для получения нелинейной функции преобразования применяют функциональные реостатные преобразователи. Нужный характер преобразования часто достигается профилированием каркаса преобразователя (рис. 11-5, в).

В рассматриваемых реостатных преобразователях статическая характеристика преобразования имеет ступенчатый характер, так как сопротивление изменяется скачками, равными сопротивлению одного витка. Это вызывает погрешность, максимальное значение которой где максимальное сопротивление одного витка; - полное сопротивление преобразователя. Иногда применяют реохордные преобразователи, в которых щетка скользит вдоль оси проволоки. У этих преобразователей отсутствует указанная погрешность. Реостатные преобразователи включают в измерительные цепи в виде равновесных и неравновесных мостов, делителей напряжения и т.

К достоинствам преобразователей относится возможность получения высокой точности преобразования, значительных по уровню выходных сигналов и относительная простота конструкции. Недостатки - наличие скользящего контакта, необходимость относительно больших его перемещений, а иногда и значительного усилия для перемещения.

Применяют реостатные преобразователи для преобразования сравнительно больших перемещений и других неэлектрических величин (усилия, давления и т. п.), которые могут быть преобразованы в перемещение.

Тензочувствительные преобразователи (тензорезисторы).

В основу работы преобразователей положен тензоэффект, заключающийся в изменении активного сопротивления проводника (полупроводника) под действием вызываемого в нем механического напряжения и деформации.

Рис. 11-6. Тензочувствительный проволочный преобразователь

Если проволоку подвергнуть механическому воздействию, например растяжению, то сопротивление ее изменится. Относительное изменение сопротивления проволоки где - коэффициент тензочувствительности; - относительная деформация проволоки.

Изменение сопротивления проволоки при механическом воздействии на нее объясняется изменением геометрических размеров (длины, диаметра) и удельного сопротивления материала.

Тензочувствительные преобразователи, широко применяемые в настоящее время (рис. 11-6), представляют собой тонкую зигзагообразно уложенную и приклеенную к полоске бумаги (подложке проволоку 2 (проволочную решетку). Преобразователь включают в цепь с помощью привариваемых или припаиваемых выводов 3. Преобразователь наклеивают на поверхность исследуемой детали так, чтобы направление ожидаемой деформации совпадало с продольной осью проволочной решетки.

Для изготовления преобразователей применяют главным образом константановую проволоку диаметром мм Константан обладает малым температурным коэффициентом электрического сопротивления, что очень важно, так как изменение сопротивления преобразователей при деформациях, например, стальных деталей соизмеримо с изменением сопротивления преобразователя при изменении температуры. В качестве подложки используют тонкую мм) бумагу, а также пленку лака или клея, а при высоких температурах - слой цемента.

Применяют также фольговые преобразователи, у которых вместо проволоки используется фольга и пленочные тензорезисторы, получаемые путем возгонки тензочувствительного материала с последующим осаждением его на подложку.

Для наклеивания проволоки на подложку и всего преобразователя на деталь применяют клеи (раствор целлулоида в ацетоне, клей бакелитовый и т. д.). Для высоких температур (выше используют жаростойкие цементы, кремнийорганические лаки и клеи и т. п.

Преобразователи выполняют различных размеров в зависимости от назначения. Наиболее часто используют преобразователи с длиной решетки (базой) от 5 до 50 мм, имеющие сопротивление 30-500 Ом.

Изменение температуры вызывает изменение характеристики преобразования тензорезисторов, что объясняется температурной зависимостью сопротивления преобразователя и различием температурных коэффициентов линейного расширения материала тензорезистора и исследуемой детали. Влияние температуры устраняется обычно путем применения соответствующих методов температурной компенсации.

Наклеенный тензочувствительный преобразователь невозможно снять с одной детали и наклеить на другую. Поэтому для определения характеристик преобразования (коэффициента прибегают к выборочной градуировке преобразователей, что дает значение коэффициента с погрешностью Методы определения характеристик тензорезисторов регламентированы стандартом. Достоинства этих преобразователей - линейность статической характеристики преобразования, малые габариты и масса, простота конструкции. Недостатком их является малая чувствительность.

В тех случаях когда требуется высокая чувствительность, находят применение тензочувствительные преобразователи, выполненные в виде полосок из полупроводникового материала. Коэффициент таких преобразователей достигает нескольких сотен. Однако воспроизводимость характеристик полупроводниковых преобразователей плохая. В настоящее время серийно выпускают интегральные полупроводниковые тензорезисторы, образующие мост или полумост с элементами термокомпенсации.

В качестве измерительных цепей для тензорезисторов используют равновесные и неравновесные мосты. Тензорезисторы применяют для измерения деформаций и других неэлектрических величин: усилий, давлений, моментов и т. п.

Термочувствительные преобразователи (терморезисторы).

Принцип действия преобразователей основан на зависимости электрического сопротивления проводников или полупроводников от температуры.

Между терморезистором и исследуемой средой в процессе измерения происходит теплообмен. Так как терморезистор при этом включен в электрическую цепь, с помощью которой производят измерение его сопротивления, то по нему протекает ток, выделяющий в нем теплоту. Теплообмен терморезистора со средой происходит из-за теплопроводности среды и конвекции в ней, теплопроводности самого терморезистора и арматуры, к которой он крепится, и, наконец, из-за излучения. Интенсивность

Рис. 11-7. Устройство (а) и внешний вид арматуры (б) платинового терморезистора

теплообмена, а следовательно, и температура терморезистора зависят от его геометрических размеров и формы, от конструкции защитной арматуры, от состава, плотности, теплопроводности, вязкости и других физических свойств газовой или жидкой среды, окружающей терморезистор, а также от температуры и скорости перемещения среды.

Таким образом, зависимость температуры, а следовательно, и сопротивления терморезистора от перечисленных выше факторов может быть использована для измерения различных неэлектрических величин, характеризующих газовую или жидкую среду. При конструировании преобразователя стремятся к тому, чтобы теплообмен терморезистора со средой в основном определялся измеряемой неэлектрической величиной.

По режиму работы терморезисторы бывают перегревные и без преднамеренного перегрева. В преобразователях без перегрева ток, проходящий через терморезистор, практически не вызывает перегрева, и температуру последнего определяет температура среды; эти преобразователи применяют для измерения температуры. В перегревных преобразователях электрический ток вызывает перегрев, зависящий от свойств среды. Перегревные преобразователи используют для измерения скорости, плотности, состава среды и т. д. Так как на перегревные терморезисторы влияет температура среды, обычно применяют схемные методы компенсации этого влияния.

Для измерения температуры наиболее распространены терморезисторы, выполненные из платиновой или медной проволоки.

Стандартные платиновые терморезисторы применяют для измерения температуры в диапазоне от -260 до медные - в диапазоне от -200 до +200 °С (ГОСТ 6651-78).

Низкотемпературные платиновые терморезисторы (ГОСТ 12877-76) применяют для измерения температуры в пределах от -261 до

На рис. 11-7, а показано устройство платинового терморезистора. В каналах керамической трубки 2 расположены две (или четыре) секции спирали 3 из платиновой проволоки, соединенные между собой последовательно. К концам спирали припаивают выводы используемые для включения терморезистора в измерительную цепь. Крепление выводов и герметизацию керамической трубки производят глазурью Каналы трубки засыпают порошком безводного оксида алюминия, выполняющим роль изолятора и фиксатора спирали. Порошок безводного оксида алюминия, имеющий высокую теплопроводность и малую теплоемкость, обеспечивает хорошую передачу теплоты и малую инерционность терморезистора. Для защиты терморезистора от механических и химических воздействий внешней среды его помещают в защитную арматуру (рис. 11-7, б) из нержавеющей стали.

Начальные сопротивления (при платиновых стандартных терморезисторов равны 1, 5, 10, 46, 50, 100 и 500 Ом, медных и 100 Ом.

Допустимое значение тока, протекающего по терморезистору при включении его в измерительную цепь, должно быть таким, чтобы изменение сопротивления терморезистора при нагреве не превышало начального сопротивления.

Статические характеристики преобразования в виде таблиц (градуировочных) и допускаемые отклонения этих характеристик для стандартных терморезисторов приведены в ГОСТ 6651-78.

Аналитически зависимость сопротивления от температуры для платиновых терморезисторов выражают следующими уравнениями:

где - сопротивление при

Для медного терморезистора

Помимо платины и меди, иногда для изготовления терморезисторов используют никель.

Для измерения температуры применяют также полупроводниковые терморезисторы (термисторы) различных типов, которые характеризуются большей чувствительностью (ТКС

термисторов отрицательный и при в 10-15 раз превышает меди и платины) и имеют более высокие сопротивления (до 1 МОм) при весьма малых размерах. Недостаток термисторов - плохая воспроизводимость и нелинейность характеристики преобразования:

где и - сопротивления термистора при температурах Т и То - начальная температура рабочего диапазона; В - коэффициент.

Термисторы используют в диапазоне температур от -60 до

Для измерения температуры от -80 до применяют термодиоды и термотранзисторы, у которых под действием температуры изменяется сопротивление р-п-перехода и падение напряжения на этом переходе. Чувствительность термотранзистора по напряжению что значительно превышает чувствительность стандартных термопар (см. табл. 11-1). Эти преобразователи обычно включают в мостовые цепи и цепи в виде делителей напряжения.

Достоинствами термодиодов и термотранзисторов являются высокая чувствительность, малые размеры и малая инерционность, высокая надежность и дешевизна; недостатками - узкий температурный диапазон и плохая воспроизводимость статической характеристики преобразования. Влияние последнего недостатка уменьшают применением специальных цепей.

Тепловую инерционность стандартных терморезисторов согласно ГОСТ 6651-78 характеризуют показателем тепловой инерции определяемым как время, необходимое для того, чтобы при внесении преобразователя в среду с постоянной температурой разность температур среды и любой точки внесенного в нее преобразователя стала равной 0,37 того значения, которое она имела в момент наступления регулярного теплового режима. Показатель тепловой инерции определяют по той части кривой переходного теплового процесса преобразователя, которая соответствует регулярному режиму, т. е. имеет экспоненциальный характер (в полулогарифмическом масштабе - прямая линия). Значение для различных типов стандартных преобразователей находится в пределах от нескольких десятков секунд до нескольких минут.

Когда необходимы малоинерционные терморезисторы, для их изготовления используют очень тонкий провод (микропровод) или применяют термисторы малого объема (бусинковые) или термотранзисторы.

Рис. 11-8. Преобразователь газоанализатора, основанный на принципе измерения теплопроводности

Рис. 11-9. Зависимость теплопроводности газа от давления

Терморезисторы применяют в приборах для анализа газовых смесей. Многие газовые смеси отличаются друг от друга и от воздуха теплопроводностью. Теплопроводность смеси, состоящей из двух газов, не вступающих в реакцию друг с другом, где а- процентное содержание первого (искомого) компонента; теплопроводность, соответственно, первого и второго компонентов. Таким образом, измеряя теплопроводность газовой смеси можно судить о процентном содержании искомого компонента (при

В приборах для газового анализа - газоанализаторах - для измерения теплопроводности используют перегревный платиновый терморезистор 1 (рис. 11-8), помещенный в камеру 2 с анализируемым газом. Конструкция терморезистора, арматуры и камеры, а также значение нагревающего тока выбирают такими, чтобы теплообмен со средой осуществлялся в основном за счет теплопроводности газозой среды.

Для исключения влияния внешней температуры, кроме рабочей, используют компенсационную камеру с терморезистором, заполненную постоянным по составу газом. Обе камеры выполняют в виде единого блока, что обеспечивает камерам одинаковые температурные условия. Рабочий и компенсационный терморезисторы при измерениях включают в соседние плечи моста, что приводит к компенсации влияния температуры.

Терморезисторы применяют в приборах для измерения степени разреженности. На рис. 11-9 показана зависимость теплопроводности газа, находящегося между телами Л и Б, от его давления. Характер этой зависимости объясняют следующим образом.

Теплопроводность газа где - коэффициент пропорциональности; плотность газа; средняя длина пути свободного пробега молекул. В свою очередь, где и кг - коэффициенты пропорциональности; число молекул в единице объема. Следовательно, при давлениях Газа, близких к атмосферному,

При разрежении газа, когда длина пути свободного пробега молекул теоретически станет равной расстоянию между телами Ли Б или больше него, практически длина пути свободного пробега молекул будет ограничена расстоянием т. е. в этом случае и теплопроводность газа

Таким образом, теплопроводность газа становится зависимой от числа молекул в единице объема, т. е. от давления (степени разреженности). Зависимость теплопроводности газа от давления используют в вакуумметрах - приборах для измерения степени разреженности.

Для измерения теплопроводности в вакуумметрах используют металлические (платиновые) и полупроводниковые терморезисторы, помещаемые в стеклянный или металлический баллон, который соединяют с контролируемой средой.

Терморезисторы применяют в приборах для измерения скорости газового потока - термоанемометрах. Установившаяся температура перегрезного терморезистора, помещенного на пути газового потока, зависит от скорости потока. В этом случае основным путем теплообмена терморезистора со средой будет конвекция (принудительная). Изменение сопротивления терморезистора вследствие уноса теплоты с его поверхности движущейся средой функционально связано со скоростью среды.

Конструкцию и тип терморезистора, арматуру и нагревающий терморезистор ток выбирают такими, чтобы были снижены или исключены все пути теплообмена, кроме конвективного.

Достоинствами термоанемометров являются высокая чувствительность и быстродействие. Эти приборы позволяют измерять скорости от 1 до 100-200 м/с при использовании измерительной цепи, с помощью которой температура терморезистора автоматически поддерживается почти неизменной.

Электролитические преобразователи.

Электролитические преобразователи основаны на зависимости электрического сопротивления раствора электролита от его концентрации. В основном их применяют для измерения концентраций растворов.

На рис. 11-10 для примера показаны графики зависимостей удельной электрической проводимости у некоторых растворов электролитов от концентрации с растворенного вещества. Из этого рисунка следует, что в определенном диапазоне изменения концентрации зависимость электрической проводимости от

Рис. 11-10. Зависимость удельной электрической проводимости растворов электролитов от концентрации растворенного вещества

Рис. 11-11. Лабораторный электролитический преобразователь

концентрации однозначна и может быть использована для определения с.

Преобразователь, применяемый в лабораторных условиях для измерения концентрации, представляет собой сосуд с двумя электродами (электролитическая ячейка) (рис. 11-11). Для промышленных непрерывных измерений преобразователи выполняют проточными, причем часто используют конструкции, в которых роль второго электрода играют стенки сосуда (металлические).

Электрическая проводимость растворов зависит от температуры. В первом приближении эту зависимость выражают уравнением где - электрическая проводимость при начальной температуре ; Р - температурный коэффициент электрической проводимости (для растворов кислот, оснований и солей

Таким образом, при использовании электролитических преобразователей необходимо устранять влияние температуры. Эту задачу решают путем стабилизации температуры раствора с помощью холодильника (нагревателя) или применения цепей температурной компенсации с медными терморезисторами, так как температурные коэффициенты проводимости меди и растворов электролитов имеют противоположные знаки.

При прохождении постоянного тока через преобразователь происходит электролиз раствора, что приводит к искажению результатов измерения. Поэтому измерения сопротивления раствора обычно проводят на переменном токе (700-1000 Гц), чаще всего с помощью мостовых цепей.

Индуктивные преобразователи.

Принцип действия преобразователей основан на зависимости индуктивности или взаимной индуктивности обмоток на магнитопроводе от положения,

Рис. 11-12. Магнитопровод с зазорами и двумя обмотками

геометрических размеров и магнитного состояния элементов их магнитной цепи.

Индуктивность обмотки, расположенной на магнитопроводе (рис. 11-12), где - магнитное сопротивление магнитопровода; - число витков обмотки.

Взаимная индуктивность двух обмоток, расположенных на том же магнитопроводе, где - число витков первой и второй обмоток.

Магнитное сопротивление определяется выражением

где - активная составляющая магнитного сопротивления (рассеиванием магнитного потока пренебрегаем); - соответственно длина, площадь поперечного сечения и относительная магнитная проницаемость участка магнитопровода; - магнитная постоянная; - длина воздушного зазора; 5 - площадь поперечного сечения воздушного участка магнитопровода; - реактивная составляющая магнитного сопротивления; Р - потери мощности в магнитопроводе, обусловленные вихревыми токами и гистерезисом; - угловая частота; Ф - магнитный поток в магнитопроводе.

Приведенные соотношения показывают, что индуктивность и взаимную индуктивность можно изменять, воздействуя на длину сечение воздушного участка магнитопровода на потери мощности в магнитопроводе и другими путями. Этого можно достичь, например, перемещением подвижного сердечника (якоря) 1 (рис. 11-12) относительно неподвижного 2, введением немагнитной металлической пластины 3 в воздушный зазор и т.

На рис. 11-13 схематически показаны различные типы индуктивных преобразователей. Индуктивный преобразователь (рис. 11 -13, а) с переменной длиной воздушного зазора характеризуется нелинейной зависимостью Такой преобразователь обычно применяют при перемещениях якоря на мм. Значительно меньшей чувствительностью, но линейной зависимостью отличаются преобразователи с переменным сечением воздушного зазора (рис. 11-13, б). Эти преобразователи используют при перемещениях до 10-15 мм.

Рис. 11-13. Индуктивные преобразователи с изменяющейся длиной зазора (а), с изменяющимся сечением зазора (б), дифференциальный (в), дифференциальный трансформаторный дифференциальный трансформаторный с разомкнутой магнитной цепью и магнитоупругий

Якорь в индуктивном преобразователе испытывает усилие (нежелательное) притяжения со стороны электромагнита

где - энергия магнитного поля; - индуктивность преобразователя; - ток, проходящий через обмотку преобразователя.

Широко распространены индуктивные дифференциальные преобразователи (рис. 11-13, в), в которых под воздействием измеряемой величины одновременно и притом с разными знаками изменяются два зазора электромагнитов. Дифференциальные преобразователи в сочетании с соответствующей измерительной цепью (обычно мостовой) имеют более высокую чувствительность, меньшую нелинейность характеристики преобразования, испытывают меньшее влияние внешних факторов и сниженное результирующее усилие на якорь со стороны электромагнита, чем недифференциальные преобразователи.

На рис. 11-13, г показана схема включения дифференциального индуктивного преобразователя, у которого выходными величинами являются взаимные индуктивности. Такие преобразователи называют взаимно-индуктивными или трансформаторными. При питании первичной обмотки переменным током и при симметричном положении якоря относительно электромагнитов ЭДС на

Рис. 11-14. Устройство (а) и вид печатной обмотки (б) индуктосина

выходных зажимах равна нулю. При перемещении якоря на выходных зажимах появляется ЭДС.

Для преобразования сравнительно больших перемещений (до 50-100 мм) применяют трансформаторные преобразователи с незамкнутой магнитной цепью (рис. 11-13, (9).

Применяют трансформаторные преобразователи угла поворота, состоящие из неподвижного статора и подвижного ротора с обмотками. Обмотку статора питают переменным током. Поворот ротора вызывает изменение значения и фазы наводимой в его обмотке ЭДС. При повороте ротора на угол - число полюсов статора) фаза этой ЭДС изменяется на 180°. Такие преобразователи используют при измерении больших угловых перемещений.

Для измерения малых угловых перемещений используют индуктосины (рис. 11-14). Ротор 1 и статор индуктосина снабжают печатными обмотками 3, имеющими вид радиального растра. Принцип действия индуктосина аналогичен описанному выше. Нанесением обмоток печатным способом удается получить большое число полюсных шагов обмотки, что обеспечивает высокую чувствительность преобразователя к изменению угла поворота.

Если ферромагнитный сердечник преобразователя подвергать механическому воздействию то вследствие изменения магнитной проницаемости материала сердечника изменится магнитное сопротивление цепи, что повлечет за собой изменение индуктивности и взаимной индуктивности М обмоток. На этом принципе основаны магнитоупругие преобразователи (рис. 11-13, е).

Конструкция преобразователя определяется диапазоном измеряемого перемещения. Габариты преобразователя выбирают исходя из необходимой мощности выходного сигнала.

Для измерения выходного параметра индуктивных преобразователей наибольшее применение получили мостовые (равновесные и неравновесные) цепи, а также компенсационная (в автоматических приборах) цепь для дифференциальных трансформаторных преобразователей.

Индуктивные преобразователи используют для преобразования перемещения и других неэлектрических величин, которые

Рис. 11-15. Емкостные преобразователи с изменяющимся расстоянием между пластинами (а), дифференциальный (б), дифференциальный с переменной активной площадью пластин (в) и с изменяющейся диэлектрической проницаемостью среды между пластинами (г)

могут быть преобразованы в перемещение (усилие, давление, момент и т. д.).

По сравнению с другими преобразователями перемещения индуктивные преобразователи отличаются значительными по мощности выходными сигналами, простотой и надежностью в работе.

Недостаток их - обратное воздействие преобразователя на исследуемый объект (воздействие электромагнита на якорь) и влияние инерции якоря на частотные характеристики прибора.

Емкостные преобразователи.

Емкостные преобразователи основаны на зависимости электрической емкости конденсатора от размеров, взаимного расположения его обкладок и от диэлектрической проницаемости среды между ними.

Для двухобкладочного плоского конденсатора электрическая емкость где - электрическая постоянная; - относительная диэлектрическая проницаемость среды между обкладками; - активная площадь обкладок; - расстояние между обкладками. Из выражения для емкости видно, что преобразователь может быть построен с использованием зависимостей

На рис. 11-15 схематически показано устройство различных емкостных преобразователей. Преобразователь на рис. 11-15, а представляет собой конденсатор, одна пластина которого перемещается под действием измеряемой величины х относительно неподвижной пластины. Статическая характеристика преобразования нелинейна. Чувствительность преобразователя возрастает с уменьшением расстояния Такие преобразователи используют для измерения малых перемещений (менее 1 мм).

Малое рабочее перемещение пластин приводит к погрешности от изменения расстояния между пластинами при колебаниях температуры. Выбором размеров деталей преобразователя и материалов добиваются снижения этой погрешности.

В емкостных преобразователях возникает усилие (нежелательное) притяжения между пластинами

где - энергия электрического поля; - соответственно напряжение и емкость между пластинами.

Применяют также дифференциальные преобразователи (рис. 11-15, б), у которых имеется одна подвижная и две неподвижные пластины. При воздействии измеряемой величины этих преобразователей одновременно изменяются емкости На рис. 11-15, в показан дифференциальный емкостной преобразователь с переменной активной площадью пластин. Такой преобразователь используют для измерения сравнительно больших линейных (более 1 мм) и угловых перемещений. В этих преобразователях легко получить требуемую характеристику преобразования путем профилирования пластин.

Преобразователи с использованием зависимости применяют для измерения уровня жидкостей, влажности веществ, толщины изделий из диэлектриков и т. п. Для примера (рис. 11-15, г) дано устройство преобразователя емкостного уровнемера. Емкость между электродами, опущенными в сосуд, зависит от уровня жидкости, так как изменение уровня ведет к изменению средней диэлектрической проницаемости среды между электродами. Изменением конфигурации пластин можно получить желаемый характер зависимости показаний прибора от объема (массы) жидкости.

Для измерения выходного параметра емкостных преобразователей применяют мостовые цепи и цепи с использованием резонансных контуров. Последние позволяют создавать приборы с высокой чувствительностью, способные реагировать на перемещения порядка 10-7 мм. Цепи с емкостными преобразователями обычно питают током повышенной частоты (до десятков мегагерц), что вызвано желанием увеличить сигнал, попадающий в измерительный прибор, и необходимостью уменьшить шунтирующее действие сопротивления изоляции.

Рис. 11-16. Схема ионизационного преобразователя

Рис. 11-17. Вольт-амперная характеристика ионизационного преобразователя

включения и необходимость в специальных источниках питания повышенной частоты.

Ионизационные преобразователи.

Преобразователи основаны на явлении ионизации газа или люминесценции некоторых веществ под действием ионизирующего излучения.

Если камеру, содержащую газ, подвергнуть облучению, например, -лучами, то между электродами, включенными в электрическую цепь (рис. 11-16), потечет ток. Этот ток зависит от приложенного к электродам напряжения, от плотности и состава газовой среды, размера камеры и электродов, свойств и интенсивности ионизирующего излучения и т. д. Эти зависимости используют для измерения различных неэлектрических величин: плотности и состава газовой среды, геометрических размеров деталей и т. д.

В качестве ионизирующих агентов применяют и у-лучи радиоактивных веществ, значительно реже - рентгеновские лучи и нейтронное излучение.

Для измерения степени ионизации используют преобразователи - ионизационные камеры и ионизационные счетчики, действие которых соответствует различным участкам вольт-амперной характеристики газового промежутка между двумя электродами. На рис. 11-17 показана зависимость тока I в камере (рис. 11-16) с постоянным составом газа от приложенного напряжения и интенсивности излучения На участке Л характеристики ток увеличивается прямо пропорционально напряжению, затем рост его замедляется и на участке Б достигает насыщения. Это указывает на то, что все ионы, образующиеся в камере, достигают электродов. На участке Б ионизационный ток снова начинает расти, что вызывается вторичной ионизацией при ударениях первичных электронов и ионов о нейтральные молекулы. При дальнейшем увеличении напряжения (участок Г) ионизационный перестает зависеть от первоначальной ионизации и наступает

непрерывный разряд (участок Д), который уже не зависит от воздействия радиоактивного излучения.

Участки А и Б вольт-амперной характеристики описывают действие ионизационных камер, а участки Б и Г - ионизационных счетчиков. Кроме ионизационных камер и счетчиков, в качестве ионизационных преобразователей применяют сцинтилляционные (люминесцентные) счетчики. Принцип действия этих счетчиков основан на возникновении в некоторых веществах - фосфорах (активированные серебром сернистый цинк, сернистый кадмий и др.) - под действием радиоактивных излучений световых вспышек (сцинтилляций), которые в счетчиках регистрируются фотоумножителями. Яркость этих вспышек, а следовательно, и ток фотоумножителя определяются радиоактивным излучением.

Выбор типа ионизационного преобразователя зависит в значительной мере от ионизирующего излучения.

Альфа-лучи (ядра атома гелия) обладают большой ионизирующей способностью, но имеют малую проникающую способность. В твердых телах а-лучи поглощаются в очень тонких слоях (еди-ницы-десятки микрометров). Поэтому при использовании а-лучей а-излучатель помещают внутрь преобразователя.

Бета-лучи представляют собой поток электронов (позитронов); они обладают значительно меньшей ионизирующей способностью, чем а-лучи, но зато имеют более высокую проникающую способность. Длина пробега р-частиц в твердых телах достигает нескольких миллиметров. Поэтому -излучатель может располагаться как внутри, так и вне преобразователя.

Изменение расстояния между электродами, площади перекрытия электродов или положения источника радиоактивного -излучения относительно ионизационных камер или счетчиков сказывается на значении ионизационного тока. Поэтому указанные зависимости используют для измерения различных механических и геометрических величин.

Конструкции ионизационных камер и счетчиков разнообразны и зависят от вида излучения.

Для регистрации отдельных частиц, а также измерения небольших -излучений широко применяют так называемые газоразрядные счетчики, действие которых описывают участки В и Г вольт-амперной характеристики. Устройство газоразрядного счетчика показано на рис. 11-19. Счетчик состоит из металлического цилиндра 1, внутри которого натянута тонкая вольфрамовая проволока 2. Оба эти электрода помещены в стеклянный цилиндр 3 с инертным газом. При ионизации газа в цепи счетчика появляются импульсы тока, число которых подсчитывается.

В качестве источников и у-излучений обычно используют радиоактивные изотопы. Источники излучения, применяемые в измерительной технике, должны иметь значительный период полураспада и достаточную энергию излучения (кобальт-60, стронций-90, плутоний-239 и др.).

Основное достоинство приборов, использующих ионизирующие излучения, заключается в возможности бесконтактных измерений, что имеет большое значение, например, при измерениях в агрессивных или взрывоопасных средах, а также в средах, находящихся под большим давлением или имеющих высокую температуру. Основной недостаток этих приборов - необходимость применения биологической защиты при высокой активности источника излучения.


испытание кузов автомобиль надежность

Измерительный преобразователь -- техническое средство с нормируемыми метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации и передачи, но непосредственно не воспринимаемый оператором. Измерительный преобразователь или входит в состав какого-либо измерительного прибора (измерительной установки, измерительной системы) или применяется вместе с каким-либо средством измерений.

По характеру преобразования различают следующие преобразователи:

Аналоговый измерительный преобразователь -- это измерительный преобразователь, преобразующий одну аналоговую величину (аналоговый измерительный сигнал) в другую аналоговую величину (измерительный сигнал);

Аналого-цифровой измерительный преобразователь -- это измерительный преобразователь, предназначенный для преобразования аналогового измерительного сигнала в числовой код;

Цифро-аналоговый измерительный преобразователь -- это измерительный преобразователь, предназначенный для преобразования числового кода в аналоговую величину.

По месту в измерительной цепи различают следующие преобразователи:

Первичный измерительный преобразователь -- это измерительный преобразователь, на который непосредственно воздействует измеряемая физическая величина. Первичный измерительный преобразователь является первым преобразователем в измерительной цепи измерительного прибора;

Датчик -- это конструктивно обособленный первичный измерительный преобразователь;

Детектор -- это датчик в области измерений ионизирующих излучений;

Промежуточный измерительный преобразователь -- измерительный преобразователь, занимающий место в измерительной цепи после первичного преобразователя.

Передающий измерительный преобразователь -- измерительный преобразователь, предназначенный для дистанционной передачи сигнала измерительной информации;

Масштабный измерительный преобразователь -- измерительный преобразователь, предназначенный для изменения размера величины или измерительного сигнала в заданное число раз.

По принципу действия преобразователи делятся на генераторные и параметрические.

Генераторные - это такие преобразователи, которые под действием входной величины сами генерируют электрическую энергию (с выходной величиной - напряжение, или ток). Генераторные измерительные преобразователи могут включаться в измерительную цепь, где отсутствует источник энергии. Примерами генераторных измерительных преобразователей являются термоэлектрические и фотоэлектрические измерительные преобразователи.

Параметрические - это такие преобразователи, которые под действием измеряемой величины изменяют значение выходной величины в зависимости от принципа действия (с выходной величиной в виде изменения сопротивления, емкости и в зависимости от значения входной величины), к ним относятся терморезистивные, емкостные измерительные преобразователи.

По физической закономерности, на которой основано действие преобразователя, все измерительные преобразователи можно разделить на следующие группы:

Резистивные;

Тепловые;

Электромагнитные;

Электростатические;

Электрохимические;

Пьезоэлектрические;

Фотоэлектрические;

Электронные;

Квантовые.

Рассмотрим некоторые группы измерительных преобразователей подробнее.

Резистивные измерительные преобразователи в настоящее время являются самыми распространенными. Принцип действия основан на изменении их электрического сопротивления при изменении входной величины.

Рисунок 1. - Схема резистивного измерительного преобразователя

При построении резистивного измерительного преобразователя стремятся к тому, чтобы изменение сопротивления R происходило под действием одной входной величины (реже двух).

К достоинствам данного преобразователя относятся: простота конструкции, малые размеры и масса, высокая чувствительность, большая разрешающая способность при малом уровне входного сигнала, отсутствие подвижных токосъемных контактов, высокое быстродействие, возможность получения необходимого закона преобразования за счет выбора соответствующих конструктивных параметров, отсутствие влияния входной цепи на измерительную.

Электромагнитные измерительные преобразователи - такие преобразователи составляют большую группу преобразователей для измерения различных физических величин и в зависимости от принципа действия бывают параметрическими и генераторными.

К параметрическим относятся преобразователи, в которых преобразуется выходное механическое воздействие в изменение параметров магнитной цепи - магнитной проницаемости, магнитного сопротивления RМ, индуктивность обмотки L.

К генераторным - преобразователи индукционного типа, использующие закон электромагнитной индукции для получения выходного сигнала. Они могут быть выполнены на базе трансформаторов и электрических машин. Последняя группа - это тахогенераторы, сельсины, поворотные трансформаторы.

Значения L и М можно изменять, уменьшая или увеличивая зазор, изменяя положение якоря, изменяя сечение S магнитного потока, поворачивая якорь относительно неподвижной части магнитной цепи, вводя в воздушный зазор пластину из ферромагнитного материала, соответственно уменьшая 0 и магнитное сопротивление зазора.

Измерительные преобразователи, преобразующие естественную входную величину в виде перемещения в изменение индуктивности называют индуктивными.

Преобразователи, преобразующие перемещение в изменение взаимоиндуктивности М, принято называть трансформаторными.

Рисунок 2 - Схема измерительного преобразователя основанного на изменении магнитного сопротивления

В трансформаторных преобразователях изменение взаимоиндуктивности М можно получить не только при изменении магнитного сопротивления, но и при перемещении одной из обмоток вдоль или поперек магнитной цепи.

Если к замкнутой магнитной цепи преобразователя приложить сжимающие, растягивающие или скручивающие усилия, то под их воздействием изменится магнитная проницаемость 0 сердечника, что приведет к изменению магнитного сопротивления сердечника и соответственно к изменению L или М.

Преобразователи, основанные на изменении магнитного сопротивления, обусловленного изменением магнитной проницаемости ферромагнитного сердечника под воздействием механической деформации, называются магнитоупругими. Их широко применяют для измерения сил, давлений, моментов.

Если в зазоре постоянного магнита, или электромагнита, через обмотку которого пропускается постоянный ток, перемещать обмотку, то согласно закону электромагнитной индукции в обмотке появляется ЭДС, равная

где - скорость изменения магнитного потока, сцепляющегося с витками обмотки W.

Поскольку скорость изменения магнитного потока определяется скоростью перемещения обмотки в воздушном зазоре, то преобразователь имеет естественную входную величину в виде скорости линейных или угловых перемещений, а выходная в виде индуктируемой ЭДС. Такие преобразователи называют индукционными.

Пьезоэлектрические преобразователи - принцип действия таких датчиков основан на использовании прямого и обратного пьезоэлектрического эффекта.

Прямой эффект представляет собой способность некоторых материалов образовывать электрические заряды на поверхности при приложении механической нагрузки.

Обратный эффект - в изменении механического напряжения или геометрических размеров образует материала под воздействием электрического поля.

В качестве пьезоэлектрических материалов используют естественный материал - кварц, турмалин, а также искусственно поляризованную керамику на основе титанита бария, титанита свинца и цирконата свинца.

Количественно пьезоэффект оценивается пьезомодулем Кd, устанавливающем зависимость между возникающим зарядом Q и приложенной силой F, который можно выразить формулой:

Рассмотрим еще один тип измерительного преобразователя тепловые преобразователи.

Их принцип действия основан на использовании тепловых процессов (нагрева, охлаждения, теплообмена) и входной величиной таких датчиков является температура.

Однако они применяются как преобразователи не только температуры, но и таких величин, как тепловой поток, скорость потока газа, влажность, уровень жидкости.

При построении тепловых преобразователей наиболее часто используют такие явления, как возникновение термо-ЭДС, зависимость сопротивления вещества от температуры.

Термопара представляет собой чувствительный элемент, состоящий из двух разных проводников или полупроводников, соединенных электрически, и преобразующий контролируемую температуру в ЭДС.

Принцип действия термоэлектрического преобразователя основан на использовании термоэлектродвижущей силы, возникающей в контуре из двух разнородных проводников, места соединения (спаи) которых нагреты до различных температур.

Знак и значение термо-ЭДС в цепи зависят от типа материала и разности температур в местах спаев.

При небольшом перепаде температур между спаями термо-ЭДС можно считать пропорциональной разности температур:

С помощью термопары можно определять температуру.

В качестве материалов для термопар используют различные драгоценные металлы (платину, золото, иридий, родий и их сплавы), а также неблагородные металла (сталь, никель, хром, сплавы нихрома).

Сравнительно редко применяют термопары из кремния и селена (полупроводники), они имеют малую механическую прочность, обладают большим внутренним сопротивлением, хотя и обеспечивают большую термо-ЭДС по сравнению с металлами.

Термо-ЭДС возникает только в спаях разнородных материалов. При сравнении различных материалов в качестве базовой принимают термо-ЭДС платины, по отношению к которой определяют термо-ЭДС других материалов.

Для повышение выходной ЭДС используют последовательное включение термопар, образующее термобатарею.

Достоинства термопар - возможность измерений в большом диапазоне температур; простота устройства; надежность в эксплуатации.

Недостатки - не высокая чувствительность, большая инерционность, необходимость поддержания постоянной температуры свободных спаев.

Терморезисторные преобразователи работают на основе свойства проводника или полупроводника изменять свое электрическое сопротивление при изменении температуры.

Для таких датчиков используют материалы, обладающие высокой стабильностью, высокой воспроизводимостью электрического сопротивления при данной температуре, значительным удельным сопротивлением, стабильностью химических и физических свойств при нагревании, инертностью к воздействию исследуемой среды.

К таким материалам в первую очередь относятся платина, медь, никель, вольфрам. Наиболее распространены платиновые и медные терморезисторы.

Платиновые терморезисторы используют в диапазоне от 0 до 6500 С; от 0 до - 2000 С. Их недостаток - теряет стабильность характеристик, и возрастает хрупкость материала при высоких температурах.

Медные терморезисторы используются в диапазоне температур от 50 до 1800С, они довольно стойки к коррозии, дешевы.

Их недостатки: высокая окисляемость при нагревании, вследствие чего их применяют в сравнительно узком диапазоне температур в средах с низкой влажностью и при отсутствии агрессивных газов.

Полупроводниковые терморезисторы отличаются от металлических меньшими размерами и инерционностью. Недостаток - нелинейная зависимость сопротивления от температуры.

Терморезисторы обычно применяют для измерения температуры. При этом нагрузочный ток, проходящий через них должен быть мал. Если этот ток будет велик, то перегрев терморезистора по отношению к окружающей среде может стать значительным. Установившее значение перегрева и соответственно сопротивление при этом будет определяться условиями теплоотдачи поверхности терморезистора.

Рисунок 3 - Общий вид термоэлектрического преобразователя

Если нагретый терморезистор поместить в среду с переменными теплофизическими характеристиками, то появляется возможность измерения ряда физических величин: скорости потока жидкости и газов, плотности газов.

Чувствительность проволочных медных терморезисторов постоянна, а чувствительность платиновых изменяется с изменением температуры. При одинаковых значениях R 0 чувствительность медных терморезисторов выше.

Диапазон измеряемых температур с помощью терморезисторами с платиновыми и медными чувствительными элементами от - 200 до + 1100 0 С.

При измерении высоких температур применяются бесконтактные средства измерений - пирометры, которые измеряют температуру по тепловому излучению. Серийно выпускают пирометры, обеспечивающие измерение температур в диапазоне от 20 до 6000 0 С.

В основе бесконтактного метода измерения температур лежит температурная зависимость излучения абсолютно черного тела, т.е. тела, способного полностью поглощать падающее на него излучение любой длины волны.

Выходной величиной в параметрических преобразователях является параметр электрической цепи – электрическое сопротивление или его со­ставляющие (R, L, C). Для использования параметрического преобра­зователя необходим дополнительный источник питания, обеспечиваю­щий образование выходного сигнала преобразователя.

К наиболее часто применяемым параметрическим преобразователям относятся реостатные , тензочувствительные (тензорезисторы ), термочувствительные (терморезисторы или термометры сопротивления ), индуктивные , емкостные, оптоэлектронные (фоторезисторы, фотодиоды и др.), ионизационные и др.

Принцип действия реостатных преобразователей основан на измене­нии электрического сопротивления проводника под влиянием входной величины – механического перемещения. Реостатный преобразователь (рис.3.1) представляет собой реостат, подвижный контакт которого переме­шается под действием измеряемой неэлектрической величины. Обмотку преобразователя изготавливают из сплавов (платина с иридием, константан, нихром, фехраль и др.).

Подобные преобразователи об­ладают статической характеристикой преобразования со ступенчатым характером, поскольку сопротивление измеряется скачками, равными соп­ротивлению одного витка, что вызывает погрешность

где DR – сопротивление одного витка;

R – полное сопротивление преобразователя.


Эта погрешность отсутствует в реохордных преобразователях, в ко­торых щетка скользит вдоль оси проволоки.

Для получения нелинейной функции преобразования приме­няют функциональные реостатные преобразователи. Нужный ха­рактер преобразования часто достигается профилированием кар­каса преобразователя (рис.3.1, в).

Достоинства реостатного преобразователя: относительная просто­та конструкции, возможность получения высокой точности преобразо­вания и значительных по уровню выходных сигналов. Основной недос­таток – наличие скользящего контакта.

Тензоэффект , положенный в основу работы тензорезисторов , заклю­чается в измерении активного сопротивления проводника (полупроводника) под действием вызываемого в нем механического напряжения и деформации.

Если проволоку подвергнуть механическому воздействию, на­пример, растяжению, то сопротивление ее изменится. Относитель­ное изменение сопротивления проволоки

DR/R = S ∙ Dl/l ,

где S – коэффициент тензочувствительности;



Dl/l – относительная де­формация проволоки.

Изменение сопротивления проволоки при механическом воз­действии на нее объясняется изменением геометрических разме­ров (длины, диаметра) и удельного сопротивления материала.

Тензочувствительные проволочные преобразователи представляют собой тонкую зигзагообразно уложенную и приклеенную к подложке проволоку. Преобразователь устанав­ливают таким образом, чтобы направление ожидаемой деформации совпадало с продольной осью проволочной решетки. В качестве материа­ла для преобразователя обычно используют константановую проволоку (у константана – малый температурный коэффициент сопротивления) и для подложки – тонкую бумагу (0,03…0,05 мм) и плёнку лака либо клея (БФ-2, БФ-4, бакелитовый и др.).

Распространение также получили фольговые преобразователи , у которых вместо проволоки используется фольга, и пленочные тензорезисторы , получаемые путем возгонки тензочувствительного матери­ала с последующим осаждением его на подложку.

Достоинства тензорезисторов: линейность статической характерис­тики преобразования, простота конструкции и малые габариты. Основной недостаток – низкая чувствительность.

В тех случаях, когда требуется высокая чувствительность, находят применение полупроводниковые тензочувствительные преобразователи (поли­кристаллические из порошкообразно­го полупроводника и монокристалли­ческие из кристалла кремния). Поскольку чувствительность полупровод­никовых тензорезисторов в десятки раз выше, чем у металлических, и, кроме того, интег­ральная технология позволяет в одном кристалле кремния формировать одно­временно как тензорезисторы, так и микроэлектронный блок обработки, то в последние годы получили преимущественное развитие интегральные полу­проводниковые тензочувствительные преобразователи. Такие элементы реализуются либо по технологии диффузионных резисторов с изоляцией их от проводящей кремниевой подложки p-n-переходами – технология «крем­ний на кремнии», либо по гетероэпитаксиальной технологии «кремний на диэлектрике» на стеклокерамике, кварце или сапфире. Для тензочувствительных преобразователей, осо­бенно полупроводниковых, сущест­венно влияние температуры на их упругие и электрические характеристики, что требует применения специальных схем температурной компенсации по­грешностей (в частности, с этой целью в расширенной схеме тензомоста ис­пользуются компенсационные резис­торы и терморезисторы). Особенно широкое применение в изготовлении измерительных преобразователей давления в силу сво­их высоких механических, изолирую­щих и теплоустойчивых качеств полу­чила технология КНС – «кремний на сапфире».



Совершенствование технологии изготовления полупроводниковых тензорезисторов создало возможность изготавливать тензоре­зисторы непосредственно на кристаллическом элементе, выполнен­ном из кремния или сапфира. Упругие элементы кристаллических материалов обладают упругими свойствами, приближающимися к идеальным. Сцепление тензорезистора с мембраной за счет молекулярных сил позволяют отказаться от использования клеющих материалов и улучшить метрологические характеристики преобразователей. На рис.3.2, а показана сапфировая мембрана 3 с расположенными на ней однополосковыми тензорезисторами p -ти­па с положительной 1 и отрицательной 2 чувствительностями. По­ложительной чувствительностью обладает тензорезистор, у которо­го отношение >0, если же <0 – чувствительность отри­цательна.

Структура однополоскового тензорезистора приведена на рис.3.2, б. Здесь: 1 – тензорезистор; 2 – защитное покрытие; 3 – металлизирован­ные токоведущие дорожки; 4 – упругий элемент преобразователя (сапфировая мембрана). Тензорезисторы можно рас­полагать на мембране так, что при деформации они будут иметь разные по знаку приращения сопротивления. Это позволяет создавать мостовые схемы, в каждое из плеч которого вклю­чаются тензорезисторы с соответствую­щим значением и даже термоком­пенсационные элементы.

Тензорезисторы при­меняют для измерения деформаций и других неэлектрических величин – усилий, давлений, моментов и т.п.

Принцип действия терморезистора основан на зависимости электрического сопротивления проводников или полупроводников от температуры.По режиму работы терморезисторы различают перегревные и без преднамеренного перегрева . Перегревные ис­пользуют для измерения скорости, плотности, состава среды и др. В перегревных преобразователях электрический ток вызывает перегрев, зависящий от свойств среды. Последние применяются для измерения температуры окружающей среды.

Распространение получили терморезисторы, выполненные из медной или платиновой проволоки. Стандартные платиновые терморезисторы применяют для из­мерения температуры в диапазоне от –260 до +1100 °С, мед­ные – в диапазоне от –200 до +200 °С (ГОСТ 6651–78). Низкотемпературные платиновые терморезисторы (ГОСТ 12877–76) применяют для измерения температуры в пределах от –261 до –183°С.

На рис.3.3, а показано устройство платинового терморези­стора. В каналах керамической трубки 2 расположены две (или четыре) секции спирали 3 из платиновой проволоки, соединенные между собой последовательно.



Рисунок 3.3 − Устройство и внешний вид арматуры платинового

термометра сопротивления

К концам спирали припаивают выводы 4, используемые для включения терморезистора в изме­рительную цепь. Крепление выводов и герметизацию керамиче­ской трубки производят глазурью 1 . Каналы трубки засыпают порошком безводного оксида алюминия, выполняющим роль изо­лятора и фиксатора спирали. Порошок безводного оксида алю­миния, имеющий высокую теплопроводность и малую тепло­емкость, обеспечивает хорошую передачу теплоты и малую инер­ционность терморезистора. Для защиты терморезистора от механических и химических воздействий внешней среды его по­мещают в защитную арматуру (рис.3.3, б) из нержавеющей стали.

Для медных терморезисторов зависимость сопротивления от темпера­туры выражается уравнением

R=R 0 (1+α t ) при –50 0 С ≤ t ≤ +180 0 С,

где R 0 – сопротивление при t =0 0 С; α = 4,26∙10 –3 К –1 .Для платиновых –

R=R 0 при 0 0 С ≤ t ≤ +650 0 С,

где А= 3,968∙10 –3 К –1 ; В= 5,847∙10 –7 К –2 ; С =–4,22∙10 –12 К –4 .

Помимо платины и меди, для изготовления терморези­сторов используют никель (в странах дальнего зарубежья).

Для измерения температуры применяют также полупровод­никовые терморезисторы (термисторы и позисторы ) различных типов, кото­рые характеризуются большой чувствительностью (температурный коэффициент сопротивления ТКС термисторов отрицательный и при 20°С в 10–15 раз превышает ТКС меди и платины, ТКС позисторов положительный и несколько хуже) и имеют более высокие сопротивления (до 1 МОм) при весьма малых размерах. Недостаток термисторов – плохая воспроизводимость и нелинейность характеристики преобразования.

Термисторы используются в диапазоне температур от –60 до +120°C.

где R и R 0 – сопротивления терморезистора при температурах соответственно t и t 0 ;

t 0 – начальная температура рабочего диапазона;

В – коэффициент преобразования.

К термочувствительным преобразователям относят также термодиоды и термотранзисторы , у которых при изменении температуры изменяет­ся величина сопротивления р-n перехода. Эти приборы обычно приме­няются в диапазоне от –80° до +150° С. Чаще всего термодиоды и терморезисторы включают в мостовые цепи и измерительные схемы в виде делителей напряжения. К достоинствам таких преобразователей относят высокие чувствительность и надежность, малые габариты, невысокую стоимость и малую инерционность. Основные недостатки: уз­кий диапазон рабочей температуры и плохая воспроизводимость ста­тической характеристики преобразователя.

Принцип действия индуктивных преобразователей основан на зависи­мости индуктивности или взаимной индуктивности обмоток на магнитопроводе от положения, геометрических размеров и магнитного сос­тояния элементов их магнитной цепи (рис.3.4). На рис.3.4 схематически показаны различные типы индук­тивных преобразователей. Индуктивный преобразователь (рис.3.4, а) с переменной длиной воздушного зазора δ характе­ризуется нелинейной зависимостью L = f (δ). Такой преобразова­тель обычно применяют при перемещениях якоря на 0,01-5 мм.

Рисунок 3.4 − Различные конструкции индуктивных преобразователей

Значительно меньшей чувствительностью, но линейной зависимо­стью L = f (s) отличаются преобразователи с переменным сечениемвоздушного зазора (рис.3.4, б). Эти преобразователи используют при перемещениях до 10…15 мм.

Широко распространены индуктивные дифференциальные преобразователи (рис.3.4, в), в которых под воздействием измеряемой величины одновременно и притом с разными знаками изменяются два зазора электромагнитов. Дифференциальные преобразователи в сочетании с соответствующей измерительной цепью (обычно мостовой) имеют более высокую чувствитель­ность, меньшую нелинейность характеристики преобразования, испытывают меньшее влияние внешних факторов и сниженное результирующее усилие на якорь со стороны электромагнита, чем недифференциальные преобразователи.

На рис.3.4,г показана схема включения дифференциаль­ного индуктивного преобразователя , у которого выходными вели­чинами являются взаимные индуктивности. Такие преобразова­тели называют взаимно-индуктивными или трансформаторными. При питании первичной обмотки переменным током и при симмет­ричном положении якоря относительно электромагнитов ЭДС на выходных зажимах равна нулю. При перемещении якоря на выходных зажимах появляется ЭДС.

Для преобразования сравни­тельно больших перемещений (до 50…100 мм) применяют трансформаторные преобразователи с незамкнутой магнитной цепью (рис.3.4, д).

В горной промышленности получили распространение магнитоупругие преобразователи (рис.3.4, е ), действие которых основано на использовании эф­фекта зависимости магнитной проницаемости (магнитного сопротивле­ния цепи) от величины механического воздействия (сжатия или рас­тяжения) на ферромагнитный сердечник преобразователя. Различают магнитоупругие датчики дроссельного и трансформаторного типов. Последние могут контролировать только усилие сжатия, однако обладают большей чувствительностью.

Достоинствами индуктивных и магнитоупругих преобразователей яв­ляются простота и надежность в работе, значительная мощность вы­ходных сигналов. Основными недостатками – обратное воздействие преобразователя на исследуемый объект (воздействие электромагни­та на якорь) и влияние инерции якоря на частотные характеристики прибора.

Принцип действия емкостных преобразователей ос­нован на зависимости электрической емкости конденсатора от размеров, взаимного расположения его обкладок и от значения диэлектри­ческой проницаемости среды между ними. Они представляют собой конденсаторы различных конструкций, преобразующие механические линейные или угловые пе­ремещения, а также давление, влажность или уровень среды в изме­нение электрической емкости.

в )

Рисунок 3.5 − Различные конструкции емкостных преобразователей

Применяют также дифференциальные преобразователи (рис.3.5, б), у которых имеется одна подвижная и две непод­вижные пластины. При воздействии измеряемой величины х у этих преобразователей одновременно изменяются емкости С 1 и С 2 . Такие преобразователи используют для измерения сравнительно больших линейных (более 1 мм) и угловых перемещений. В этих преобразователях легко получить требуемую характеристику преобразо­вания путем профилирования пластин.

Преобразователи с использованием зависимости C = f 1 () применяют для измерения уровня жидкостей, влажности ве­ществ, толщины изделий из диэлектриков и т. п. Для примера (рис.3.5, в) приведем устройство емкостного уровнемера . Емкость между электродами, опущенными в сосуд, зависит от уровня жидкости, так как изменение уровня ведет к изменению средней диэлектрической проницаемости среды между электродами. Изменением конфигурации пластин можно получить желаемый характер зависимости показаний прибора от объема (массы) жидкости.

Для измерения выходного параметра емкостных преобразо­вателей применяют мостовые цепи и цепи с использованием резо­нансных контуров. Последние позволяют создавать приборы с высокой чувствительностью, способные реагировать на переме­щения порядка 10 –7 мм. Цепи с емкостными преобразователями обычно питают током повышенной частоты (до десятков мега­герц), что вызвано желанием увеличить сигнал, попадающий в измерительный прибор, и необходимостью уменьшить шунтиру­ющее действие сопротивления изоляции.

Полупроводниковые фоточувствительные преобразователи в качестве чувствительного элемента имеют светочувствительный слой, на­несенный на подложку (стеклянную пластинку). Сопротивление этого слоя обратно пропорционально интенсивности светового потока или мощности источника освещения. Фоторезисторы , фотодиоды и фототранзисторы обладают сравнительно высокой стабильностью, хорошей чувствительностью, но их применение ограничивается при наличии пыли, например угольной, препятствующей нормальной работе.

Действие ионизационных преобразователей основано на явлении ио­низации газа или люминесценции некоторых веществ под действием ионизирующего излучения. В качестве ионизирующих агентов применяют a –, b– и g– лучи радиоактивных веществ, иногда рентгеновские лучи и нейтронное излучение . Выбор типа ионизационного преобразователя зависит во многом от ионизирующего излучения. Гамма–лучи (электромагнитные колебания малой длины волны – 10 –8 …10 –11 см)об­ладают большой проникающей способностью.

Конструкции ионизационных камер и счетчиков разнообразны и зависят от вида излучения. В качестве источников ионизирующего излучения обычно используют кобальт-60, стронций-90, плутоний-239 и др.

Преимущества ионизационных преобразователей – в возможности бес­контактных измерений в агрессивных или взрывоопасных средах, сре­дах, имеющих высокою температуру или находящихся под большим дав­лением. Основной недостаток: необходимость применения биологической защиты при высокой активности источника излучения.

Генераторные преобразователи

В генераторных преобразователях выходной величиной является ЭДС или заряд, функционально связанный с измеряемой неэлектрической величиной.

Рассмотрим наиболее распространенные виды генераторных преобразователей.

Термоэлектрические преобразователи работают на термоэлектричес­ком эффекте, возникающем в цепи термопары : при разности температур в точках 1 и 2 (рис.3.6) соединения двух разнородных проводников в цепи термопары возникает термоЭДС .

Точку соединения проводников (электродов) 1 называют рабочим концом термопары, точки 2 и 2" – свободны­ми концами. Чтобы термоЭДС в цепи термопары однозначно определя­лась температурой рабочего конца, необходимо температуру свободных концов термопары поддерживать одинаковой и не­изменной. Градуировку термоэлектрических термометров произво­дят обычно при температуре сво­бодных концов 0°С. Градуировочные таблицы для стандартных термопар также составлены при условии равенства температуры свободных концов 0°С. При практическом применении термоэлектри­ческих термометров температура свободных концов термопары обычно не равна 0°С и поэтому необходимо вводить поправку.

Тахогенераторы предназначены для измерения угловой скорости вращающихся объектов. Ротор тахогенераторов механически связывают с валом испытуемого элек­тродвигателя или исполнительного механизма, а об угловой скорости w судят по выходной ЭДС генератора.

Из тахогенераторов наибольшее распространение получили тахогенераторы постоянного тока , выпускаемые с постоянными магнитами либо с независимым возбуждением. Область их применения весьма разнообразна: прецизионные тахогенераторы постоянного тока используются в авиации, судостроении, станкостроении, металлургической и других отраслях промышленности. К преимуществам этих датчиков относят достаточно высокую точность и наличие выходного сигнала постоянного тока, удобного для последующей обработки. Основным недостатком этих тахогенераторов является наличие коллекторно-щеточного узла, снижающего надежность работы и долговечность преобразователя.

Синхронные тахогенераторы имеют малое внутреннее сопротивление, что позволяет получить от них достаточно большие мощности. При изменении частоты вращения ротора в синхронных машинах изменяется не только амплитуда выходного напряжения, но и его частота. Благодаря механической устойчивости синхронные тахогенераторы нашли применение в трамваях, локомотивах, крановом хозяйстве и др.

Асинхронные тахогенераторы по конструкции подобны двухфазным асинхронным двигателям. Их роторы обычно выполняют в виде тонкостенного металлического цилиндра. Две обмотки статора тахогенератора сдвинуты на 90° относительно друг друга. К од­ной обмотке подводят напряжение питания, а с измерительной обмот­ки снимают ЭДС. При подаче напряжения питания постоян­ной величины и частоты пульсирующий магнитный поток, пересекая ротор, индуктирует в измерительной обмотке ЭДС, пропорциональную угловой скорости w ротора, приводимого в движение контролируемой машиной или механизмом. Основное достоинство асинхронных тахогенераторов состоит в том, что независимо от частоты вращения ротора ЭДС переменного тока на выходе такого тахогенератора имеет постоянную частоту.

К основным недостаткам тахогенераторов относят ог­раниченный частотный диапазон измеряемых величин. В последние годы тахогенераторы постепенно вытесняются фотоимпульсными и индукционными датчиками, а также специальными интеллектуальными преобразователями – шифраторами углового перемещения (положения) .

В фотоимпульсных датчиках импульсы в оптоэлектронной паре источник излучения – приемник излучения (светодиод – фотопреобразователь) создаются при помощи дисков с прорезями или отверстиями, в некоторых приводах применяют вращающиеся детали машин. В подавляющем большинстве шифраторов положения также используют в качестве чувствительного элемента оптоэлектронную пару.

Импульсы индукционных датчиков создаются под влиянием пульсирующего или знакопеременного магнитного потока. В качестве тела, модулирующего поток, служат специальные зубчатые колеса либо вращающиеся ферромагнитные детали машин.

В пьезоэлектрических преобразователях используется эффект появ­ления электрических зарядов на поверхности некоторых кристаллов (кварц, турмалин, сегнетова соль и др.) под влиянием механичес­ких напряжений.

Рисунок 3.7

Устройство пьезоэлектрического преобразователя для изме­рения переменного давления газа показано на рис.3.7. Давле­ние Р через металлическую мембрану 1 передается на зажатые между металлическими прокладками 2 кварцевые пластинки 3 . Шарик 4 способствует равномерному распределению давления по поверхности кварцевых пластинок. Средняя прокладка соединена с выводом 5 , проходящим через втулку из хорошего изоля­ционного материала. При воздействии давления Р между выводом 5 и корпусом преобразователя возникает разность потенциалов

Практическая работа №4