Мтс

Сенсорный экран. Как работают сенсорные экраны

Человечество всегда любило делиться на группы: католики и протестанты, вегетарианцы и мясоеды, поклонники сенсорных экранов и те, кто не испытывает к ним особой тяги. К счастью, техно-гики вряд ли развяжут войну или крестовый поход против тех, кто не разделяет их точку зрения, несмотря на то, что армия приверженцев «пальцеориентированных» интерфейсов растет со скоростью развития самой технологии. Как же это все устроено?

Смартфоны и планшеты: как работает экран?

Первый сенсорный экран появился 40 лет назад в США. Сетка ИК-лучей, состоявшая из 16х16 блоков, была установлена в компьютерную систему Plato IV. Первый телевизор с сенсорным экраном показали на всемирной ярмарке 1982 года, спустя год презентовали первый персональный компьютер HP-150. В телефонах сенсорные экраны появились гораздо позже: в 2004 году на 3GSM Congress (так в то время называли выставку Mobile World Congress) компания Philips представила на суд журналистов три модели (Philips 550, 755 и 759). В то время операторы сотовой связи возлагали большие надежды на сервис MMS, поэтому основные функции сенсорного экрана сводились к развлекательным: для того чтобы сделать MMS более эмоциональными, разработчики предлагали пользователям обрабатывать фото с помощью стилуса – подписывать, пририсовывать детали – и только потом отправлять адресату.

Тогда же появилась возможность пользоваться виртуальной клавиатурой, но так как все модели обладали цифровой, а сенсорный экран значительно увеличивал стоимость устройств, про них на время забыли. Через год появился Fly X7 – полностью сенсорный бесклавиатурный моноблок, к сожалению, с рядом аппаратных недоработок, которые вкупе с тогдашней безызвестностью брэнда похоронили его среди ничем не примечательных моделей. И это были не единственные попытки создать что-то новое, однако несмотря на ряд предшественников, первыми полноценными «пальцеориентированными» моделями можно назвать лишь Apple iPhone, LG KE850 PRADA и линейку HTC Touch, появившуюся на рынке в 2007 году. Именно они положили начало эре сенсорных телефонов.

Строго говоря, сенсорный элемент экраном не является – это проводящая поверхность, которая работает в паре с экраном и позволяет вводить данные с помощью пальца или иного предмета.

Как экран распознает касание?

Существует множество типов сенсорных экранов, но мы остановимся только на тех, которые широко используются в мобильных устройствах: смартфонах и планшетах.

Резистивный дисплей состоит из гибкой пластиковой мембраны и стеклянной панели, пространство между которыми заполнено микроизоляторами, которые изолируют токопроводящую поверхность. Когда вы нажимаете на экран пальцем или стилусом, панель и мембрана замыкаются, а контроллер регистрирует изменение сопротивления, ориентируясь на которое умная электроника определяет координаты нажатия. Основные плюсы – дешевизна и простота изготовления, что позволяет снизить рыночную стоимость конечного устройства.

Также к несомненным преимуществам можно отнести то, что экран реагирует на любое нажатие – при работе с ним не обязательно использовать специальный токопроводящий стилус или палец, для этого вполне подойдет авторучка или любой другой предмет, которым вы сможете надавить на определенную точку экрана. Резистивный экран устойчив к загрязнениям. Ряд операций можно провести даже рукой в перчатке – например, ответить на звонок в холодное время года. Однако не обошлось и без недостатков. Резистивный экран легко царапается, поэтому его желательно закрывать специальной защитной пленкой, что в свою очередь не лучшим образом сказывается на качестве изображения. Более того, эти царапины имеют свойство увеличиваться в размерах.

Экран обладает невысокой прозрачностью – пропускает всего 85% света, исходящего от дисплея. При низких температурах экран «подмерзает» и хуже реагирует на нажатия, не очень долговечен (35 млн нажатий в одну точку). Предтечей резистивных экранов были матричные сенсорные, основу которых составляла сенсорная сетка: на стекло наносились горизонтальные проводники, на мембрану – вертикальные. При прикосновении к экрану направляющие замыкались и указывали координаты точки. Эта технология используется до сих пор, но в смартфонах ее уже практически не встретишь.

Схема резистивного экрана

Технология емкостных экранов основана на том, что человек обладает большой электрической емкостью и способен проводить ток. Для того чтобы все работало, на экран наносится тонкий токопроводящий слой, а к каждому из четырех углов подводится слабый переменный ток небольшой величины. При прикосновении к экрану происходит утечка точка, которая зависит от того, насколько далеко от угла дисплея произошло касание. По этой величине и определяются координаты точки. Такие экраны более устойчивы к царапинам, не пропускают жидкость, более долговечны (около 200 млн нажатий) и прозрачны по сравнению с резистивными, к тому же, реагируют на легчайшие прикосновения. Однако у этого есть и свои минусы – во время разговора можно неловко задеть телефоном ухом и запросто запустить какое-нибудь приложение, рукой в перчатке на звонок не ответишь – электропроводимость не та. Более высокая стоимость экрана, разумеется, сказывается на цене устройства.

Схема емкостного экрана

Как работает мой "айфон"?

К более продвинутым разновидностям емкостных экранов относятся проекционно-емкостные. На внутреннюю поверхность стекла наносится электрод, в качестве второго электрода выступает человек. При прикосновении к экрану образуется конденсатор, измеряя емкость которого можно определить координаты нажатия. Так как электрод нанесен на внутреннюю поверхность экрана, тот весьма устойчив к загрязнениям; слой стекла может достигать 18 мм, что позволяет значительно повысить срок жизни дисплея и устойчивость к механическим повреждениям.

Одна из самых интересных фишек проекционно-емкостных экранов – поддержка технологии мультитач. Также они обладают большой чувствительностью и имеют относительно широкий температурный диапазон работы, но с рукой в перчатке взаимодействуют по-прежнему не очень. Казалось бы, это может смутить потенциальных покупателей, однако несколько лет назад кто-то из предприимчивых корейских фанатов iPhone догадался использовать в качестве стилуса обыкновенную сосиску, электропроводимость которой позволяла ответить на звонок. Неоднозначный тренд вызвал бурю восторга на форумах и привлек внимание производителей аксессуаров, которые запустили в продажу специальный стилус-сосиску. Перед обычной сосиской у него есть как минимум один плюс – он не оставляет жирных следов на экране девайса.

Схема проекционно-емкостного экрана

Вне зависимости от технологии работы экрана, у него есть ряд типичных характеристик. Помимо разрешения, к основным характеристикам экрана можно отнести угол обзора и цветопередачу, которая зависит от типа дисплея. Понятие цветопередачи неразрывно связано с «глубиной цвета» - термином, обозначающим объем памяти в количестве бит, используемых для хранения и передачи цвета. Чем больше бит, тем глубже цвета. Современные LCD-дисплеи в смартфонах и планшетах отображают 18-битный цвет (более 262 тысяч оттенков). Максимально возможным на данный момент является 24-битный TrueColor, который способен воспроизвести более 16 млн оттенков в AMOLED и IPS-матрицах.

Угол обзора, как и любой угол, измеряется в градусах и характеризует величину, при которой яркость и читаемость экрана падает не больше, чем в два раза, если смотреть на него прямо перпендикулярно. Этой характеристикой обладают LCD-дисплеи, но не OLED.

Сравнение медиаплееров: плюсы и минусы

Модель
Тип экрана
Недостатки
Достоинтсва

Проекционно-емкостный

  • Не управляется при помощи стилуса
  • Поддержка multitouch

AMOLED
  • Сильно бликует на солнце


  • Неравномерная подсветка
  • Достоверная цветопередача
  • Большие углы обзора
  • Низкий уровень энергопотребления


TFT TN
  • Плохая цветопередача
  • Малый угол обзора
  • Быстрый отклик
  • Низкая стоимость


IPS
  • Время отклика
  • Хорошие углы обзора
  • Хорошая контрастность
  • Хорошая цветопередача

ZOOM.CNews

Типы экранов смартфонов и планшетов

На данный момент при производстве смартфонов и планшетов, как правило, используются либо LCD, либо OLED-дисплеи.

В основе LCD-экранов лежат жидкие кристаллы, которые не обладают собственным свечением, поэтому в ультимативном порядке требуют лампу задней подсветки. Под внешним воздействием (температурным или электрическим) кристаллы могут изменять структуру и становиться непрозрачными. Управляя током, на дисплее можно создавать надписи или картинки.

Схема ЖК-пикселя

Дисплеи на жидких кристаллах, используемые в смартфонах и планшетах, в большинстве своем имеют активную матрицу (TFT). В TFT-матрицах используются прозрачные тонкопленочные транзисторы, которые располагаются прямо под поверхностью экрана. За каждую точку изображения отвечает отдельный транзистор, поэтому картинка обновляется быстро и непринужденно.

С появлением LCD TFT-матриц время отклика дисплея значительно повысилось, но остались проблемы с цветопередачей, углами обзора и битыми пикселями.

Схема ЖК-пикселя

Самые распространенные TFT-матрицы - TN+film и IPS. TN+film – самая простая технология. Film – это дополнительный слой, который применяют для увеличения угла обзора. Из плюсов таких матриц – маленькое время отклика и невысокая себестоимость, минусы – плохая цветопередача и, увы, углы обзора (120-140 градусов). В IPS-матрицах (In-Plane-Switchin) удалось увеличить угол обзора до 178 градусов, повысить контрастность и цветопередачу до 24 бит и добиться глубокого черного цвета: в этой матрице второй фильтр всегда перпендикулярен первому, поэтому свет через него не проходит. Но время отклика по-прежнему осталось на низком уровне. Super-IPS является прямым наследником IPS с уменьшенным временем отклика.

PLS-матрица (Plain-to-Line Switchin) появилась в недрах компании Samsung как альтернатива IPS. К ее достоинствам можно отнести более высокую плотность пикселей, чем у IPS, высокую яркость и хорошую цветопередачу, низкое энергопотребление, большие углы обзора. Время отклика сравнимо с Super-IPS. Среди недостатков – неравномерная подсветка. Следующее поколение, Super-PLS, обскакало IPS в углах обзора на 100% и на 10% по показателям контрастности. Также эти матрицы оказались дешевле в производстве на целых 15%.

При производстве OLED-дисплеев используют органические светодиоды, которые под воздействием электричества испускают собственное свечение. По сравнению с LCD-дисплеями, у OLED – множество плюсов. Во-первых, они не используют дополнительную подсветку, а значит, аккумулятор смартфона разряжается не так быстро, как в случае с LCD. Во-вторых, OLED-дисплеи тоньше. От этой характеристики напрямую зависит толщина и дизайн девайса. К тому же, OLED-дисплеи могут быть гибкими, что предвещает отличные перспективы развития. У OLED отсутствует такой параметр как «угол обзора» - изображение хорошо просматривается с любого угла. По яркости и контрастности (1000000:1) OLED также лидирует.

Его хвалят за живые и насыщенные цвета и отдельно – за глубокий черный. Но есть, конечно, и минусы. Одним из основных можно назвать недолговечность: органические соединения неустойчивы к окружающей среде и имеют обыкновение выгорать, причем, одни цвета спектра страдают больше, чем другие. Хотя если вы меняете телефон раз в три года, вряд ли это станет аргументов против покупки. К тому же, до сих пор изготовление OLED обходится дороже, чем LCD.

Схема OLED

OLED-экраны второго поколения тоже в большинстве своем имеют активную матрицу TFT. Называются они AMOLED. Главное преимущество – еще более низкое энергопотребление, недостатки – нечитаемость картинки при ярком солнечном свете.

Схема AMOLED

Следующим шагов в развитии технологии стали SuperAMOLED-экраны, которые впервые начала использовать Samsung. Принципиальное их отличие от AMOLED состоит в том, что пленки с активными транзисторами (TFT) интегрированы в пленку из полупроводников. Это дает прирост яркости на 20%, снижение электропотребления на 20% и повышение читаемости на солнечном свете на целых 80%!

Схема SUPERAMOLED

Не стоит путать экраны, произведенные по технологии OLED, с экранами с LED-подсветкой – это совсем разные вещи. В последнем случае обычный ЖК-дисплей получает заднюю или боковую светодиодную подсветку, которая, конечно, улучшает качество изображения, но до AMOLED или SuperAMOLED все равно не дотягивает.

Что нас ждет в будущем?

На данный момент самые ясные и предсказуемые перспективы ожидают OLED-экраны. Уже сейчас в Сети можно найти информацию о технологии ближайшего будущего QLED – светодиодах на основе квантовых точек (полупроводниковый нанокристалл, который светится, когда подвергается воздействию тока или света). Сильными сторонами этой технологии являются высокая яркость, невысокая стоимость производства, широкий диапазон цветов, низкое энергопотребление. Квантовые точки, которые лежат в основе новой технологии, имеют еще одно важное свойство – они способны излучать спектрально чистые цвета. Уже сейчас этой технологии предрекают блестящее будущее. В Samsung уже разработали полноцветный 4-дюймовый QLED-дисплей, но в серийное производство новинку запускать пока не торопятся.

Прототип QLED-дисплея

Зато в Samsung подтвердили, что уже в этом году начнется серийное производство гибких OLED-дисплеев. Вероятно, первыми устройствами станут смартфоны и планшеты. Малая толщина экрана и физические свойства панели позволят существенно увеличить полезную площадь экрана и развяжут руки техно-дизайнерам.

В качестве другой перспективной технологии можно назвать IGZO, которой занимается компания Sharp. В ее основе лежат исследования профессора Хидео Хосоно, который решил присмотреться к альтернативным полупроводникам и в результате разработал технологию TAOS (Transparent Amorphous Oxide Semiconductors) - прозрачные аморфные оксидные полупроводники, которые содержат окислы индия, галлия и цинка (InGaZnO), сокращенно - IGZO. Отличия смеси от аморфного кремния, который использовался при производстве TFT, позволяет существенно снизить время отклика, значительно повысить разрешение экрана, сделать его ярче и контрастнее. Компания Apple весьма заинтересовалась перспективами этой технологии и вложила в производство дисплеев IGZO миллиард долларов.

Совсем недавно рынок мобильных устройств мог предложить в основном кнопочные устройства. Лишь изредка в руках у людей оказывались КПК и прочие диковинки, которые имели сенсорный экран. Но времена меняются, и технологии не стоят на месте. Теперь прилавки практически полностью избавились от кнопочных устройств, предоставив огромнейший выбор сенсорных телефонов и планшетов. При этом разнообразие форм, моделей и качества гаджетов просто поражает. Но все они имеют одинаковый принцип ввода и вывода информации - сенсорный экран, который также имеет свои разновидности. Рассмотрим, что такое тачскрин, какие его виды бывают и как провести их калибровку.

Виды сенсоров

С самого начала давайте дадим определение тачскрину. Тачскрин - это устройство ввода какой-либо информации в телефон или планшет. Он предназначается для адекватного восприятия устройством приказов. Часто тачскрин (или сенсор) путают с экраном, но это абсолютно две разные вещи.

Рынок на сегодняшний день предлагает 4 основных вида сенсоров для мобильных устройств:

  • резистивный;
  • индукционный;
  • емкостной;
  • инфракрасный.

Их можно встретить на самых различных устройствах и, в свою очередь, от вида тачскрина зависит частично их стоимость. Рассмотрим более подробно каждых из них.

Резистивный тачскрин

Резистивный вид тачскринов работает по принципу реагирования на изменения геометрических параметров. Так, чтобы получить отклик от экрана, нужно на него слегка нажать. По этой причине можно сразу сказать о недостатках, которые имеет резистивный тачскрин. Что это плохой показатель - ничего не сказать. Все дело в самом нажатии, по причине которого очень сильно портится экран. И хоть работать с таким тачскрином довольно просто в перчатках или при помощи стилуса, но изображение получается блеклым и через некоторое время появляются царапины.

Индукционный тачскрин

Данный вид тачскринов располагается позади твердого стекла и управление им можно производить лишь при помощи специального стилуса. Это очень неудобно, так как при утере или поломке этого предмета для управления нужно будет выложить немалую сумму денег на покупку.

Емкостной тачскрин

Этот вид тачскринов можно назвать усовершенствованной формой резистивных сенсоров. Он также находится сверху самого экрана и немного портит изображение. Для управления можно применять как стилус, так и пальцы. Есть возможность поддержки мультитача (чего нет у предыдущих вариантов) и принцип работы заключается в разнице электрического сопротивления. Это позволяет вводить информацию лишь при помощи легкого касания. Недостатком является невозможное управление сторонними предметами и пальцами в перчатках.

Инфракрасный тачскрин

Эти сенсоры работают по принципу инфракрасной сетки. Инфракрасные тачскрины являются универсальными. Они не портят изображение, но, в свою очередь, имеют длительный отклик и низкую точность.

Примерно в 80% сенсорных устройств используется емкостной сенсор. Он максимально удобен, стоит недорого и при этом имеет высокие показатели скорости отклика. Резистивный реже встречается, но и он также применяется в мобильных устройствах по причине своей дешевизны.

Калибровка тачскрина

В некоторых случаях, при замене сенсора или при сбоях в работе, требуется проводить калибровку. Эта процедура не сильно сложная, но требует максимального внимания, так как от нее зависит правильность отклика тачскрина.

Калибровка тачскрина - это процедура настройки сенсора, которая проводится для повышения точности реакции на касание к устройству. Для проверки, требуется эта процедура или нет, нужно снять защитную пленку (если ее нет - протереть хорошо экран), включить любой текстовый редактор и нажать на определенную букву. Если взамен выбранного варианта появился на экране другой знак - требуется проведение калибровки.

Калибровка резистивных сенсоров

Как правило, резистивные сенсорные экраны сразу при первом включении требуют откалибровать тачскрин. Что это нужная ежемесячная процедура - практически все забывают после первого включения. Также калибровку нужно проводить при замене экрана, сбое ПО, после падения или удара.

Резистивный сенсор откалибровать довольно просто благодаря «вшитой» утилите под названием ts_calibrate. Для ее запуска в самом меню телефона или планшета нужно зайти в раздел «Настройки». Далее выбрать пункт «Настройки телефона» и здесь нажать на «Калибровка». В результате этих действий экран станет черным и на нем появится крестик с красной точкой, расположенной по центру.

Чтобы откалибровать резистивный тачскрин для телефона или планшета, нужно нажимать в указанное точкой место. После каждого отклика она сдвигается и за четвертым нажатием в памяти устройства сохраняются все данные о сетке. Проверку после проведения калибровки проводить можно при помощи ввода текста. Если все правильно было сделано, то на экране будет появляться указанная буква или цифра.

Калибровка емкостного сенсора

Довольно редко, но бывают случаи, когда у емкостных сенсоров также сбивается сетка и их нужно калибровать. Проблема состоит в самой процедуре, так как эти тачскрины имеют очень сложную конструкцию и устройства не располагают «вшитым» ПО.

Проведение калибровки требуется начинать с загрузки утилиты TouchScreen Tune. Она легко определяет и настраивает сам тачскрин. Что это даст? Просто в случаях сбоя ПО или замены сенсора невозможно самостоятельно точно выставить сетку, которая бы работала адекватно. Вот благодаря такой программке можно подогнать все под нужные значения.

Дополнительно стоит отметить сбои в работе G-сенсора, который определяет положение смартфона или планшета в пространстве. В некоторых случаях он ведет себя неадекватно и очень сильно усложняет использование гаджета.

Для проведения калибровки акселерометра устройства под ОС Андроид требуется:

  1. Зайти в инженерное меню и одновременно нажать кнопку выключения и снижения уровня громкости.
  2. После появления меню на экране, при помощи той же кнопки громкости, нужно перелистать позиции и найти пункт Test Report.
  3. В открывшемся списке выбрать G-Sensor cali.

После этого просто положите гаджет на ровную поверхность и нажмите на Do Calibration. Нужно подождать, пока на экране перестанут появляться цифровые значения. Затем два раза нажать на кнопку увеличения громкости и выбрать Reboot. Калибровка акселерометра проведена.

Меры предосторожности

Калибровать резистивный тачскрин для планшета и телефона нужно обязательно раз в месяц, так как при активном использовании устройства быстро нарушается вся сетка. Если этого не делать, можно в результате получить неадекватный отклик на нажатие и неудобство в использовании. Но, как правило, с проведением калибровки в этом случае не возникает проблем.

Значительно сложнее обстоят дела с емкостными сенсорами. Они изначально не предполагают проведение калибровки в качестве стандартной процедуры. По этой причине перед тем как приступить к ее выполнению, нужно понимать, если калибровка будет проведена с большими нарушениями, то не получится вернуть все изначальные настройки, которые имел тачскрин. Что это значит? Это полная потеря функциональности устройства, которую практически невозможно восстановить даже в сервисных центрах. Следовательно, проведение калибровки емкостного сенсора нужно лишь в том случае, когда вы уверены в своих силах и навыках.

iPhone 2G был первым мобильным телефоном, управление которым полностью строилось на взаимодействии с сенсорным экраном. С момента его презентации прошло больше десяти лет, но многие из нас все еще не знают, как устроен Touchscreen. А ведь мы сталкиваемся с этим интуитивным средством ввода не только в смартфонах, но и в банкоматах, платежных терминалах, компьютерах, автомобилях и самолетах - буквально повсюду.
До тачскринов самым распространенным интерфейсом для ввода команд в электронные устройства были различные клавиатуры. Хотя, кажется, что у них с тачскринами нет ничего общего, на самом деле то, насколько сенсорный экран по принципам работы схож с клавиатурой, может удивить. Давайте рассмотрим их устройство в деталях.

Клавиатура представляет собой печатную плату, на которой устанавливается несколько рядов переключателей-кнопок. Вне зависимости от их конструкции, мембранной или механической, при нажатии каждой из клавиш происходит одно и то же. На компьютерной плате под кнопкой замыкается электрическая цепь, компьютер регистрирует прохождение тока в этом месте схемы, «понимает», какая клавиша нажата и выполняет соответствующую ей команду. В случае с сенсорным экраном происходит почти тоже самое.

Существует порядка десятка различных видов сенсорных экранов, однако большинство из этих моделей или давно устарело и не используется, или относится к экспериментальным и вряд ли когда-нибудь появится в серийных устройствах. Прежде всего, я расскажу об устройстве актуальных технологий, тех из них, с которыми постоянно взаимодействуете или хотя бы можете столкнуться в повседневной жизни.

Резистивный сенсорный экран

Резистивные сенсорные экраны изобретены еще в 1970 году и с тех пор изменились мало.
В дисплеях с такими сенсорами над матрицей располагается пара дополнительных слоев. Впрочем, оговорюсь, матрица здесь вовсе не обязательна. Первые резистивные сенсорные устройства не были экранами вовсе.

Нижний сенсорный слой состоит из стеклянной основы и называется резистивным слоем. На него наносится прозрачное металлическое покрытие, хорошо передающее ток, например, из такого полупроводника, как оксид индия-олова. Верхний слой тачскрина, с которым взаимодействует пользователь нажимая на экран, сделан из гибкой и упругой мембраны. Он называется проводящим слоем. В пространстве между слоями оставляют воздушную прослойку, либо равномерно усеивают его микроскопическими изолирующими частицами. По краям к сенсорному слою подводится четыре, пять или восемь электродов, связывающих его с датчиками и микроконтроллером. Чем больше электродов, тем выше чувствительность резистивного такчскрина, поскольку изменение напряжения на них постоянно отслеживается.


Вот экран с резистивным тачскрином включен. Пока ничего не происходит. Электрический ток свободно течет по проводящему слою, но когда пользователь дотрагивается до экрана, мембрана сверху прогибается, изолирующие частицы расступаются, и она касается нижнего слоя тачскрина, вступает в контакт. За этим следует изменение напряжения разом на всех электродах экрана.

Контроллер тачскрина обнаруживает изменения напряжения и считывает показания с электродов. Четыре, пять, восемь значений и все разные. По разнице в показаниях между правым и левым электродами микроконтроллер вычислит X-координату нажатия, а по различиям в напряжении на верхнем и нижнем электродах, определит Y-координату и, таким образом, сообщит компьютеру точку, в которой слои сенсорного слоя экрана соприкоснулись.

Резистивные сенсорные экраны могут похвастать длинным перечнем недостатков. Так, они в принципе не способны распознать двух одновременных нажатий, не говоря уже о большем числе. Они плохо ведут себя на холоде. Из-за необходимости в прослойке между слоями сенсора, матрицы таких экранов заметно теряют в яркости и контрастности, склонны бликовать на солнце, и в целом выглядят заметно хуже. Тем не менее, там, где качество изображения играет второстепенную роль, их продолжают применять в силу устойчивости к загрязнениям, возможности использования в перчатках и, что самое главное, низкой стоимости.

Такие средства ввода повсеместно монтируются в недорогих массовых устройствах, вроде информационных терминалов в общественных местах и все еще встречаются в устаревающих гаджетах, типа дешевых MP3-плееров.

Инфракрасный сенсорный экран

Следующим, куда менее распространенным, но, тем не менее, актуальным вариантом сенсорного экрана является инфракрасный тачскрин. Он не имеет ничего общего с резистивным сенсором, хотя и выполняет схожие функции.

Инфракрасный тачскрин сконструирован из массивов светодиодов и светочувствительных фотоэлементов, расположенных на противоположных сторонах экрана. Светодиоды подсвечивают поверхность экрана невидимым инфракрасным светом, образуя на ней нечто вроде паутины или координатной сетки. Это напоминает охранную сигнализацию, какой ее показывают в шпионских боевиках или компьютерных играх.

Когда к экрану что-то прикасается, не важно палец это, рука в перчатке, стилус, или карандаш, два или более луча прерываются. Фотоэлементы фиксируют это событие, контроллер тачскрина выясняет, какие из них недополучают инфракрасный свет и по их положению вычисляет зону экрана, в которой возникло препятствие. Остальное - сопоставить прикосновение с тем, какой элемент интерфейса находится на экране в этом месте - задача программного обеспечения.

Сегодня с инфракрасными сенсорными экранами можно столкнуться в тех гаджетах, чьи экраны обладают нестандартной конструкцией, там, где добавлять дополнительные сенсорные слои технически сложно или нецелесообразно - в электронных книгах на базе дисплеев E-link, например, Amazon Kindle Touch и Sony Ebook. Кроме того, устройства с подобными сенсорами из-за простоты и ремонтопригодности приглянулись военным.

Емкостный сенсорный экран

Если в резестивных сенсорных экранах компьютер регистрирует изменение проводимости, последовавшее за нажатием на экран, непосредственно между слоями сенсора, то емкостные сенсоры фиксируют прикосновение непосредственно.

Человеческое тело, кожа - хорошие проводники электричества и обладают электрическим зарядом. Обычно это замечаешь пройдясь по шерстяному ковру или сняв любимый свитер, а затем прикоснувшись к чему-либо металлическому. Все мы знакомы со статическим электричеством, испытывали его действие на себе и видели крошечные искры, срывающиеся с наших пальцев в темноте. Более слабый, незаметный обмен электронами между человеческим телом и различными проводящими поверхностями происходит постоянно и именно его фиксируют емкостные экраны.

Первые такие тачскрины назывались поверхностно-емкостными и были логичным развитием резистивных сенсоров. В них всего один проводящий слой, похожий на тот, что использовался ранее, устанавливался прямо поверх экрана. К нему также присоединялись чувствительные электроды, на этот раз по углам сенсорной панели. Следящие за напряжением на электродах датчики и их программное обеспечение были сделаны заметно чувствительнее и теперь могли улавливать малейшие изменения в течении электрического тока по экрану. Когда палец (другой проводящий ток предмет, например, стилус) касается поверхности с поверхностно-емкостным тачскрином, проводящий слой немедленно начинает обмениваться с ним электронами, а микроконтроллер это замечает.

Появление поверхностно-емкостных тачскринов стало прорывом, однако из-за того, что нанесенный прямо поверх стекла токопроводящий слой было легко повредить, они не были пригодны для устройств нового поколения.


Для создания первого iPhone потребовались проекционно-емкостные сенсоры. Этот тип тачскринов быстро стал наиболее распространенным в современной потребительской электронике: смартфонах, планшетах, ноутбуках, моноблоках и прочих бытовых устройствах.

Верхний слой экрана с тачскрином этого типа выполняет защитную функцию и может быть сделан из закаленного стекла, например, знаменитого Gorilla Glass. Ниже располагаются тончайшие электроды, образующие сетку. Поначалу их накладывали друг на друга в два слоя, затем для уменьшения толщины экрана стали располагать на одном уровне.

Выполненные из полупроводниковых материалов, в том числе уже упоминавшегося оксида индия-олова, эти токопроводящие волоски создают электростатическое поле в местах своего пересечения.


Когда палец касается стекла, за счет электропроводных свойств кожи он искажает локальное электрическое поле в местах ближайших пересечений электродов. Это искажение может быть измерено, как изменение емкости в отдельно взятой точке сетки.

Поскольку массив электродов делается достаточно мелким и плотным, такая система способна отслеживать касание очень точно и без проблем улавливает сразу несколько прикосновений. Кроме того, отсутствие дополнительных слоев и прослоек в бутерброде из матрицы, сенсора и защитного стекла положительно сказывается на качестве изображения. Правда, по той же причине, разбитые экраны, как правило, заменяются полностью. Однажды собранный воедино, экран с проекционно-емкостным сенсором чрезвычайно сложно поддается ремонту.

Сейчас преимущества проекционно-емкостных тачскринов не звучат, как что-то удивительное, но на момент презентации iPhone они обеспечили технологии колоссальный успех, несмотря на объективные минусы - чувствительность к загрязнениям и влажности.

Чувствительные к давлению сенсорные экраны - 3D Touch

Идейным предшественником сенсорных экранов, чувствительных к давлению, стала фирменная технология Apple, под названием Force Touch, применявшаяся в умных часах компании, MacBook, MackBook Pro и Magic Trackpad 2.

Опробовав на этих устройствах интерфейсные решения и различные сценарии использования распознавания силы нажатия, Apple начала внедрение похожего решения в свои смартфоны. В iPhone 6s и 6s Plus распознавание и измерение давления стало одной из функций тачскрина и получило коммерческое наименование 3D Touch.


Хотя в Apple и не скрывали, что новая технология лишь модифицирует привычные нам емкостные сенсоры и даже показали схему, в общих чертах объяснявшую принцип ее действия, подробности об устройстве сенсорных экранов с 3D Touch появились только после того, как первые iPhone нового поколения были разобраны энтузиастами.

Для того, чтобы научить емкостной сенсорный экран распознавать нажатия и различать несколько степеней давления, инженерам из Купертино потребовалось пересобрать бутерброд сенсорного экрана. Они внесли изменения в отдельные его части и добавили к емкостному еще один, новый слой. И, что интересно, делая это, они явно вдохновлялись устаревшими резистивными экранами.


Сетка емкостных сенсоров осталась без изменений, однако она была перенесена назад, ближе к матрице. Между набором электрических контактов, следящих за местом прикосновения к дисплею, и защитным стеклом был интегрирован дополнительный массив из 96 отдельных датчиков.


Его задача заключалась не в том, чтобы определить местоположение пальца на экране iPhone. С этим по-прежнему отлично справлялся емкостный тачскрин. Эти пластины необходимы для обнаружения и измерения степени изгиба защитного стекла. Компания Apple специально для iPhone заказала у Gorilla Glass разработку и производство такого защитного покрытия, которое бы сохраняло прежнюю прочность и, в то же время, было достаточно гибким, чтобы экран мог реагировать на давление.

На этой разработке можно было закончить материал, повествующий о сенсорных экранах, если бы не еще одна технология, которой несколько лет назад прочили большое будущее.

Волновые сенсорные экраны

Неожиданно, но они не используют электричество и даже не имеют ничего общего со светом. Технология Surface Acoustic Wave system для определения точки прикосновения применяет поверхностные акустические волны, распространяющиеся вдоль поверхности экрана. Ультразвук, создаваемый пьезоэлектрическими элементами по углам, слишком высок для того, чтобы его мог уловить человеческий слух. Он распространяется взад и вперед, многократно отражаясь от краев экрана. Звук анализируется на предмет аномалий, создаваемых прикасающимися к экрану предметами.

Недостатков у волновых сенсорных экранов не много. Они начинают ошибаться после сильного загрязнения стекла и в условиях сильного шума, но, при этом, в экранах с таким сенсором нет дополнительных слоев, увеличивающих толщину и влияющих на качество изображения. Все компоненты сенсора прячутся под рамкой дисплея. Кроме того, волновые сенсоры позволяют точно подсчитывать площадь соприкосновения экрана с пальцем или другим предметом и по этой площади косвенно рассчитать силу нажатия на экран.

Мы уже вряд ли столкнемся с этой технологией в смартфонах из-за нынешней моды на безрамочные дисплеи, но несколько лет назад компания Samsung экспериментировала с Surface Acoustic Wave system в моноблоках, а в качестве комплектующих для игровых автоматов и рекламных терминалов панели с акустическими тачскринами продаются и сейчас

Вместо заключения

За очень краткий срок тачскрины завоевали мир электроники. Несмотря на отсутствие тактильного отклика и другие свои недостатки, сенсорные экраны стали очень интуитивным, понятным и удобным методом ввода информации в компьютеры. Не в последнюю очередь, своим успехом они обязаны разнообразием технических реализаций. Каждая со своими преимуществами и недостатками, подходящая для своего класса устройств. Резистивные экраны для самых дешевых и массовых гаджетов, емкостные экраны для смартфонов и планшетов и настольных компьютеров с которыми мы взаимодействуем каждый день и инфракрасные тачскрины для тех случаев, когда конструкцию экрана следует оставить в неприкосновенности. В заключение, остается лишь констатировать, что сенсорные экраны с нами надолго, замены им в ближайшем будущем не предвидится.

Еще совсем недавно мало кто мог поверить в то, что телефоны с привычными кнопками уступят место устройствам, которые управляются с помощью прикосновения к экрану. Но времена меняются и спрос на кнопочные телефоны постепенно падает, а на смартфоны — растет.

Термин «тачскрин» образовался от двух слов — Touch и Screen, что в переводе с английского языка переводится как «сенсорный экран». Да, именно так — тачскрин и есть сенсорный экран, к которому вы прикасаетесь, когда пользуетесь своим смартфоном или планшетом. На деле же сенсорные экраны встречаются не только в мире мобильной техники. Так, вы могли видеть их при внесении средств на счет мобильного устройства через терминал, в банкомате, в билетных устройствах и т.д.

Важно обратить внимание на то, что существует несколько различных принципов работы сенсорных экранов, в зависимости от того, где и для чего они используются. Разумеется, разнится и стоимость технологии. Так, нет никакого смысла применять высокотехнологичные сенсорные экраны для терминалов пополнения счета мобильной связи, чего не скажешь о тех же смартфонах.

Что представляет из себя тачскрин?

В современных смартфонах используются емкостные сенсорные экраны. Они представляют из себя стеклянную панель, на которую нанесен слой прозрачного резистивного материала. В углах расположены электроды, которые подают на проводящий слой низковольтное переменное напряжение. Тело человека может проводить через себя электрический ток, а также обладает определенной емкостью. Поэтому во время прикосновения к экрану возникает утечка и место этой утечки определяет контроллер, который использует данные с электродов по углам панели.

В КПК, которые сегодня в продаже почти не встречаются, используются резистивные экраны, в которых помимо стеклянной панели имеется гибкая мембрана. Поверхность между ними заполнена микро-изоляторами. Когда на экран производится нажатие, мембрана и панель замыкаются, после чего контроллер фиксирует изменение сопротивления и преобразует его в координаты прикосновения.

Запомните, емкостный экран не реагирует на нажатие предмета и даже простейшего (нужен стилус со специальным наконечником), в то время как резистивные экраны реагируют абсолютно на любое прикосновение.

Можно ли заменить тачскрин?

В случае, если пользователь разбил тачскрин или тот вышел из строя по тем или иным причинам (например, перестал реагировать на нажатия), возможна замена тачскрина. Замену желательно производить в специализированном сервисе с гарантией.

В настоящее время уже никого не удивишь сенсорным экраном. Более того, уже странно видеть устройства без сенсора, особенно, когда речь идет о мобильных гаджетах. Это обусловлено стремлением увеличить площадь рабочей поверхности. Но часто ли мы задумываемся о том, какой тип дисплея используется в том или ином устройстве? Случалось ли такое, что, купив новый планшет или смартфон, мы пытаемся управлять им с помощью привычно цифрового пера, но вот незадача, устройство попросту не реагирует на его прикосновение. Видимо, экран выполнен по другой технологии, емкостной, которая постепенно начинает вытеснять своего предшественника, дисплей резистивного типа.

Можно встретить большое количество сенсорных дисплеев, отличающихся не только конструктивными особенностями, но и принципом работы. На сегодняшний день существуют следующие типы сенсорных экранов: резистивный, емкостной, проекционно-емкостной, матричный, сенсорный экран на поверхностно-акустических волнах, инфракрасный, тензометрический, индуктивный.

В настоящий момент в электронной технике используются два основных типа сенсорных экранов: резистивный и емкостной. О них мы и поговорим подробней, а также попытаемся выделить сильные и слабые стороны каждого.

Вначале рассмотрим принцип работы резистивного сенсорного экрана. Он состоит из стеклянной панели и гибкой пластиковой мембраны, на которые нанесено резистивное покрытие. Пространство между стеклом и мембраной заполнено микроизоляторами, которые в свою очередь надежно изолируют проводящие поверхности, равномерно распределившись по активной области экрана. При нажатии на дисплей, панель и мембрана замыкаются, а контроллер с помощью аналогово-цифрового преобразователя регистрирует изменение сопротивления, преобразовывая его в координаты касания. Именно по этой причине на такой экран можно нажимать любым твердым предметом, это может быть, как ноготь, так и специальный стилус, и даже обычный карандаш. Как следствие такого строения, резистивные экраны постепенно изнашиваются, из-за чего и возникает необходимость в периодической калибровке экрана, чтобы при нажатии на дисплей происходила правильная обработка координат точки касания.

Бывают четырех-, восьми-, пяти-, шести- или семиэлектродные экраны. Самыми простыми в изготовлении, следовательно, и самыми дешевыми, являются четырехэлектродные. Они выдерживают всего 3 миллиона нажатий в одну точку. Пятипроводные уже будут значительно надежнее - до 35 миллионов нажатий, в них четыре электрода расположены на панели, а пятый находится на мембране, которая покрыта токопроводящим составом. Стоит отметить, что пятипроводные и последующие версии шести- и семипроводные экраны продолжают работать даже при повреждении части мембраны.

Преимущества

К достоинствам резистивного экрана можно отнести невысокую стоимость его производства, а, следовательно, и устройства, в котором он используется. Кроме этого, стоит отметить, что отзыв сенсора здесь не зависит от состояния поверхности экрана, даже в случае загрязнения, тачскрин остается таким же чувствительным. Следует также выделить точность попадания в нужную точку, т.к. используется густая решетка резистивных элементов.

Недостатки

В качестве недостатков резистивных экранов выделим низкое светопропускание, не более 70% или 85%, поэтому требуется повышенная яркость подсветки. Также это низкая чувствительность, т.е. просто прикасаться пальцем не достаточно, требуется надавливание, так что без цифрового пера или длинных ногтей не обойтись. Данный тип в большинстве случаев не поддерживает мультитач, т. е. экран понимает лишь одно касание. При взаимодействии с экраном нужно прилагать определенные усилия, чтобы передать какую-либо команду, а переусердствовав можно не только поцарапать, но и повредить дисплей. Как уже было сказано выше, для правильного функционирования периодически необходимо производить калибровку экрана.

Емкостной сенсорный экран

Емкостной экран представляет собой стеклянную панель, которая покрыта прозрачным резистивным материалом, в котором, как правило, используется сплав оксида индия и оксида олова. По углам панели установлены электроды, подающие на проводящий слой низковольтное переменное напряжение, они следят за течением зарядов в экране, и передают данные в контроллер, определяя, таким образом, координаты точки касания. До прикосновения экран обладает некоторым электрическим зарядом; при касании пальцем на проводящем слое появляется точка, потенциал которой меньше, чем потенциалы электрода, т. к. тело человека обладает способностью проводить электрический ток и имеет некоторую емкость. На экране нет никаких гибких мембран, что обеспечивает высокую надежность и позволяет снизить яркость подсветки. Данный тип экрана способен одновременно определять координаты двух и более точек касания, что и означает поддержку мультитач.

Подвидом емкостных стали проекционно-емкостные экраны. Работают они по схожему принципу. Отличие заключается в том, что базовые элементы в них расположены не на внешней стороне экрана, а на внутренней, благодаря чему сенсор получается более защищенным. В основном дисплеи такого типа используются в современных мобильных устройствах.

Взаимодействие с емкостным экраном должно осуществляться только проводящим предметом, голым пальцем или специальным стилусом, который обладает электрической емкостью. Количество нажатий до выхода сенсорных элементов из строя достигает более 200 млн раз.

Преимущества

Из плюсов емкостных экранов выделим, что даже на ярком солнце видимость остается достаточно хорошей, чего нельзя сказать о резистивном экране, т. к. он отражает много окружающего света. Преимуществом также стала возможность быстрого и точного распознавания касания без использования дополнительных аксессуаров. Несомненным достоинством экранов этого типа является более длительное время службы сенсора, по сравнению с предыдущим типом. Также появился «многопальцевый» интерфейс или мультитач, хотя далеко не во всех устройствах с экраном такого типа он реализован в полной мере.

Недостатки

К негативным сторонам использования емкостного сенсорного экрана можем отнести более высокую стоимость по причине сложности производства. Взаимодействие с дисплеем возможно только при касании с материалом, который является проводником. По этой причине для работы с ним приобретаются специальные емкостные стилусы или перчатки, особенно это становится актуальным в холодную погоду, а это еще одна статья расходов.

Подводя итог, напомним, что резистивные экраны чувствительны к нажатию, а емкостные реагируют на касание. Точность емкостных дисплеев сравнима с точностью резистивных, но емкостной тип отличается более высокой надежностью за счет отсутствия гибкой мембраны, а меньшее количество слоев делает их более прозрачными.

Бытует мнение, что резистивные дисплеи уже отжили свое, а будущее - за емкостными. Действительно, переход от механико-электрического ввода к электрическому уже много значит, т. к. возросла точность определения координат, и появился мультитач.

Тем не менее, сегодня на рынке электронной техники еще остается большое количество устройств с резистивными экранами, но они потихоньку начинают вытесняться гаджетами с емкостными сенсорами. Наблюдая эту тенденцию, можно предположить, что первые в скором времени и вовсе исчезнут.