Билайн

Совместное использование ресурсов. Совместное использование сетевых ресурсов

Published on Февраль 18, 2009 by · Комментариев нет

В предыдущей статье я рассказывал о модели OSI и о том, как она служит в качестве модели для применения абстракции между физическими устройствами и ПО. В этой статье я сначала собирался поговорить о том, как стеки протоколов связаны с моделью OSI. Но после некоторых размышлений я решил, что эта тема довольно запутанная и не представляет особой ценности для сетевых администраторов. Учитывая это, я хочу поговорить о том, как сделать ресурсы доступными в сети.

Итак, я хочу заострить свое внимание на том, как сделать ресурсы доступными по сети. Если вы остановитесь и на время задумаетесь, то поймете, что основной причиной создания сетей является расположение ресурсов так, чтобы они могли совместно использоваться несколькими компьютерами. Ресурсы могут проявляться во множестве различных форм. Зачастую совместное использование ресурсов означает общий доступ к файлам и папкам, но не всегда. В те времена, когда я начинал работать с сетями, принтеры были очень дорогими, поэтому очень часто встречались ситуации, в которых компании создавали сети только для того, чтобы один принтер мог использоваться несколькими сотрудниками. Это позволяло компании экономить средства на покупке и обслуживании отдельного принтера для каждого сотрудника.

Даже маленькие домашние сети создаются с целью совместного использования ресурсов. Самые распространенные домашние сети включают беспроводную точку доступа, которая также служит в качестве Интернет маршрутизатора. В таких сетях Интернет является именно тем ресурсом, который используется совместно. В таких сценариях просто нет необходимости иметь отдельное Интернет соединение для каждого компьютера, поскольку одно соединение может быть использовано совместно.

Как вы видите, существует множество различных типов ресурсов, которые можно совместно использовать в сети. Сам процесс обеспечения доступа к ресурсам варьируется в зависимости от типа ресурсов, которые будут совместно использоваться, а также от используемых в сети операционных систем. Я начну свое обсуждение с разговора о том, как можно обеспечивать доступ к файлам и папкам по сети.

Прежде чем начать

Прежде чем начать, я бы хотел вкратце упомянуть о том, что информация, которую я собираюсь вам предоставить, основана на Windows Server 2003. Windows Server 2003, Windows XP, и все предыдущие версии Windows работают с обеспечением доступа к файлам и папкам по примерно одинаковому принципу. Шаги, которые вы используете для обеспечения общего доступа к ресурсам, немного отличаются в этих системах, но основные принципы одинаковые. В Windows Vista используется другой подход к обеспечению общего доступа к ресурсам по сравнению с ее предшественниками, поэтому мы поговорим об этой ОС в последующих статьях этой серии. А пока, просто помните о том, что большая часть того, что я вам покажу, неприменима к Vista.

Создание файлового ресурса (File Share)

Если вы хотите разрешить коллективное использование файлов, хранящихся на сервере, вам нужно для начала создать файловый ресурс. Файловый ресурс – это специально созданная точка доступа, через которую пользователи смогут получать доступ к файлам. Причина, по которой файловый ресурс необходим, заключается в том, что с точки зрения безопасности было бы слишком рискованным шагом открыть доступ ко всему содержимому сервера.

Создание файлового ресурса является весьма простой задачей. Для этого нужно просто запустить процесс с создания папки в том месте, в котором вы хотите разместить общие данные. Например, многие файловые серверы имеют назначенный массив хранения или диск данных, предназначенный исключительно для хранения данных (а не для программных файлов и компонентов ОС).

В большинстве случаев, у вас есть довольно объемное количество папок, содержимое которых необходимо использовать совместно. Также каждая из этих папок должна иметь свои особенные требования безопасности. Вы можете создавать отдельный ресурс для каждой папки, но это обычно считается не очень хорошей идеей, если только каждый ресурс не располагается на разных дисках. В каждом правиле есть свои исключения, но в большинстве случаев вам потребуется создать по одному файловому ресурсу для каждого тома. Вы можете разместить все свои папки в одном таком ресурсе, а затем назначить необходимые разрешения для каждой отдельной папки. По мере развития этой статьи вы начнете понимать, почему создание нескольких файловых ресурсов является такой плохой идеей.

Если у вас уже есть несколько папок, не беспокойтесь о них. Вы с легкостью можете создать новую папку и переместить в нее существующие папки. Другим вариантом является создание файлового ресурса на уровне тома, в этом случае вам не придется перемещать существующие папки.

В целях написания этой статьи предположим, что вы создали папку, которая будет включать подпапки, и что вы разрешите общий доступ к этой папке. Когда вы создали папку, нажмите на ней правой клавишей и выберите команду «Доступ/Безопасность» из появившегося меню. После этого у вас появится страница свойств, как показано на рисунке A.

Рисунок A: Вкладка «Доступ» дает вам возможность разрешить общий доступ к папке

Как видно из рисунка, вкладка «Доступ» позволяет вам контролировать, будет ли разрешен общий доступ к этой папке. Когда вы выбираете опцию «Разрешить общий доступ к этой папке», вам будет дана инструкция ввести имя ресурса. Имя, которое вы выберите, очень важно. Windows не так требователен к именам ресурсов, но даже в этом случае, я бы рекомендовал назначить ресурсу имя, не превышающее шестнадцати знаков, и избежать использования пробелов и символов в целях обратной совместимости. Следует также отметить, что если вы назначаете ресурсу имя, в конце которого стоит символ $, то ресурс становится невидимым. В Windows есть несколько скрытых ресурсов по умолчанию, о которых я расскажу позже.

Поле «Комментарии» позволяет вам вводить комментарии о том, для чего будет использоваться этот ресурс. Это делается исключительно в целях администрирования. Комментарии не являются обязательными, но документирование ресурсов никогда не было плохой идеей.

Теперь взгляните на раздел «Ограничения пользователей». Вы заметите на рисунке, что по умолчанию значение этого параметра является «Максимально допустимый». Всякий раз, когда вы устанавливаете Windows сервер, у вас должны быть в наличии лицензии клиентского доступа. У вас есть возможность либо приобрести лицензии для каждого отдельного клиента, либо создать лицензию сервера, который будет поддерживать определенное количество соединений. Предположим, у вас есть несколько серверов, в таких ситуациях обычно дешевле лицензировать клиентов, нежели отдельные серверы. В любом случае, когда ограничения пользователя имеют параметр «Максимально допустимый», неограниченное количество клиентов сможет подключаться к ресурсу до тех пор, пока количество соединений будет соответствовать количеству лицензий, которые вы приобрели. Если вы используете модель лицензирования каждого клиента по отдельности, то доступ к ресурсу технически неограничен, но у каждого клиента обязательно должна быть лицензия.

Другим вариантом здесь будет разрешение подключения определенного количества пользователей к этому ресурсу. Эта опция практически никак не связана с лицензированием, однако непосредственно связана с производительностью. Оборудование с малыми возможностями может не поддерживать большого количества клиентских подключений. Таким образом, компания Microsoft дает вам варианты ограничения одновременных подключений к ресурсу, чтобы не перегружать оборудование.

Заключение

В этой статье я начал говорить о том как обеспечить общий доступ к ресурсам в сети. В следующей части этой серии статей я расскажу вам о том, как задавать разрешения для ресурсов, которые вы создаете.

Основной функцией ЛВС является предоставление ресурсов в совместное использование. Даже если пользователи нуждаются в компьютерах разных конфигураций, доступ к информации и ресурсам одинаково необходим всем. ЛВС может обеспечить совместный доступ к следующим аппаратным средствам компьютера:

    Жесткие диски. Общее использование жестких дисков означает доступ с одного компьютера к данным другого компьютера и наоборот. Каждый пользователь сети определяет, какие папки, файлы, принтеры и другие ресурсы его компьютера могут быть доступны для других. Это означает, что никто не обязан полностью открывать свой диск для общего использования. Кроме того, совместное использование дисков позволяет производить цен­трализованную архивацию и восстановление хранимых данных, что экономит время затраты на носители информации.

    CD-ROM-дисководы. Несмотря на то, что CD-ROM дисководы все чаще и чаще входят в поставку новых компьютеров, в сети их может оказаться немного. Можно организовать совместный доступ к этим устройствам для членов рабочей группы и использовать их для установки программ, копирования файлов, просмотра видеороликов и многого другого. Установка программ и чтение файлов с CD-ROM диска происходит быстрее, нежели с дискет или магнитной ленты. Отсутствие необходимости ставить CD-ROM дисководы на каждую рабочую станцию сети экономит средства, а у пользователей, никогда не имевших CD-ROM дисководы, появится возможность доступа к информации, поставляемой дисках.

    Файлы . Совместно использовать можно не только приложения, но и файлы. Файлы хранятся в папках на жестких дисках рабочих станций. ОС локальной вычислительной сети позволяет выбирать определенные папки для общего доступа, при этом доступ к любой папке может быть ограниченным. Следует помнить, что только к некоторым типам файлов, например к базам данных, возможен доступ одновременно и на чтение и на запись.

    Принтеры. Несмотря на то, что принтеры стали существенно дешевле, чем они к были, вряд ли имеет смысл оснащать каждую рабочую станцию собственным устройством печати. Установка одного или двух общих принтеров на рабочую группу, например, лазерного для обычной печати и цветного для подготовки презентаций, сэкономит деньги и позволит всем печатать, когда это необходимо. С помощью ОС локальной вычислительной сети можно легко организовать доступ к своему принтеру для нескольких коллег, а в случае необходимости также легко прекратить этот доступ.

При использовании ресурса имеется два способа контролировать доступ к нему. Можно защитить ресурс паролем, что называется контролем на уровне ресурсов , или задать список пользователей, которые смогут получать доступ к ресурсу, это называетсяконтролем на уровне пользователей . В любой момент времени можно открыть доступ к своим ресурсам или закрыть его. Пользователь сам решает, предоставлять ли остальным членам рабочей группы доступ к файлам на своем компьютере или не предоставлять.

Основные топологии лвс

Вычислительные машины, входящие в состав ЛВС, могут быть расположены самым случайным образом на территории, где создается вычислительная сеть. Следует заметить, что для способа обращения к передающей среде и методов управления сетью небезразлично, как расположены абонентские ЭВМ. Поэтому имеет смысл говорить о топологии ЛВС.

Топология ЛВС - это усредненная геометрическая схема соединений узлов сети.

Топологии вычислительных сетей могут быть самыми различными, но для локальных вычислительных сетей типичными являются всего три:кольцевая, шинная, звездообразная .

Иногда для упрощения используют термины - кольцо, шина извезда. Не следует думать, что рассматриваемые типы топологий представляют собой идеальное кольцо, идеальную прямую или звезду.

Любую компьютерную сеть можно рассматривать как совокупность узлов.

Узел - любое устройство, непосредственно подключенное к передающей среде сети.

Топология усредняет схему соединений узлов сети. Так, и эллипс, и замкнутая кривая, и замкнутая ломаная линия относятся к кольцевой топологии, а незамкнутая ломаная пиния - к шинной.

Кольцевая топология предусматривает соединение узлов сети замкнутой кри­вой - кабелем передающей среды (рис. 2). Выход одного узла сети соединяется со вхо­дом другого. Информация по кольцу передается от узла к узлу. Каждый промежуточный узел между передатчиком и приемником ретранслирует посланное сообщение. Принимаю­щий узел распознает и получает только адресованные ему сообщения.

Кольцевая топология является идеальной для сетей, занимающих сравнительно небольшое пространство. В ней отсутствует центральный узел, что повышает надежность сети. Ретрансляция информации позволяет использовать в качестве передающей среды любые типы кабелей.

Рис. 2 . Сеть кольцевой топологии

Последовательная дисциплина обслуживания узлов такой сети снижает ее быстродействие, а выход из строя одного из узлов нарушает целостность кольца и требует принятия специальных мер для сохранения тракта передачи информации.

Из-за сложностей с прокладкой кабельной системы большинство производителей ЛВС разрабатывают сети с чистой кольцевой топологией. Вместо этого используется специальный центральный хаб реализующий кольцевую топологию в сети со звездообразной схемой прокладки кабеля.

Шинная топология - одна из наиболее простых (рис. 3). Она связана с использованием в качестве передающей среды коаксиального кабеля. Данные от передающего узла сети распространяются по шине в обе стороны. Промежуточные узлы не транслируют поступающих сообщений. Информация поступает на все узлы, но принимает сообщение только тот, которому оно адресовано. Дисциплина обслуживания параллельная.

Рис. 3 . Сеть шинной топологии.

Это обеспечивает высокое быстродействие ЛВС с шинной топологией. Сеть легко на­ращивать и конфигурировать, а также адаптировать к различным системам. Сеть шинной топологии устойчива к возможным неисправностям отдельных узлов.

Компьютеры в сетях с шинной топо­логией в любой момент времени имеют равноправный доступ к магис­тральному кабелю. Прежде чем пере­сылать данные другому компьютеру, необходимо проверять, свободен ли кабель. Эта проверка производится на логическом уровне. С целью предот­вращения коллизий на этом же уровне осуществляются функции слияния (как и на въездах на автомагистраль).

Недостаток этой топологии заключается в том, что весь сетевой трафик зависит от магистрального кабеля. При разрыве кабеля в любой точке или при подключении очередного узла вся сеть перестанет функционировать. Тем не менее, это, как правило, наиболее дешевый вариант, поскольку необходим только общий кабель для соединения узлов.

Сети шинной топологии наиболее распространены в настоящее время. Следует отме­тить, что они имеют малую протяженность и не позволяют использовать различные типы кабеля в пределах одной сети.

Звездообразная топология базируется на концепции центрального узла, называемого хабом (hub) (рис. 4), к которому подключаются периферийные узлы. Каждый периферийный узел имеет свою отдельную линию связи с хабом. Вся информация передается через центральный узел, который ретранслирует, переключает и маршрутизирует информационные потоки в сети.

Рис. 4 . Сеть звездообразной топологии

Звездообразная топология значительно упрощает взаимодействие узлов ЛВС друг с другом, позволяет использовать более простые сетевые адаптеры. В то же время работоспособность ЛВС со звездообразной топологией целиком зависит от центрального узла.

Преимуществом таких сетей является то, что кабель каждого компьютера защищен от повреждений в любом другом кабеле. Если нарушится соединение какого-либо компьютера или оборвется его кабель, то только этот компьютер потеряет связь с сетью, остальные компьютеры сохранят соединение друг с другом через хаб. С точки зрения надежности сети такой тип топологии является наилучшим.

Недостатки звездообразной топологии сказываются при использовании очень маленьких сетей. Стоимость центрального хаба может быть довольно большой. В зависимости от марки хаба и количества обеспечиваемых соединений она может достигать нескольких тысяч долларов.

В реальных вычислительных сетях могут использоваться более сложные топологии, представляющие внекоторых случаях сочетания рассмотренных.

Выбор той или иной топологии определяется областью применения ЛВС, географическим расположением ее узлов и размерностью сети в целом.

Под ресурсами ПК будет пониматься любой из следу­ющих элементов:

Логические диски, включая накопители на CD-ROM, ZIP, DVD и другие аналогичные устройства;

Каталоги (папки) с подкаталогами (вложенными папками) или без них, а также содержащиеся в них файлы;

Подключенные к ПК устройства: принтеры, модемы и др.

Ресурс, доступный только с ПК, на котором он нахо­дится, называется локальным. Ресурс ПК, доступный для дру­гих компьютеров сети, называется разделяемым или сетевым (общим, совместно используемым). Локальный ресурс мож­но сделать разделяемым, и, наоборот, разделяемому ресурсу можно вернуть статус локального, т. е. запретить доступ к нему других пользователей сети.

Создание разделяемых сетевых ресурсов и доступ к ним обеспечиваются специальными сетевыми операционными системами . Базовые сетевые возможности сетевых ОС позволяют копировать файлы с одного ПК сети на другой, с одного компьютера сети обрабатывать данные (вводить, редактировать, удалять, про­изводить поиск), размещенные на другом. Для некоторых сетевых ОС можно также запустить программу, размещенную в памяти од­ного компьютера, которая будет оперировать данными, хра­нящимися на другом ПК.

Обычно используются один или несколько мощных ПК (выделенные серверы), которые предоставляют свои ресурсы для совместного использования в сети. Система коллективного доступа работает по принципу разделения времени работы главного компьютера.

В зависимости от используемых сетевых ресурсов в иерар­хических сетях различают серверы следующих типов.

Файловый сервер. В этом случае на сервере находятся со­вместно обрабатываемые файлы или (и) совместно исполь­зуемые программы. В этом случае на рабочих станциях находится только небольшая (клиентская) часть программ, требующая незна­чительных ресурсов. Программы, допускающие такой режим работы, называются программами с возможностью инсталля­ции в сети. Требования к мощности сервера и пропускной спо­собности сети при таком способе использования опреде­ляются количеством одновременно работающих рабочих станций и характером используемых программ.

Сервер баз данных. На сервере размещается база данных, которая может пополняться с различ­ных рабочих станций или (и) выдавать информацию по зап­росам с рабочей станции. Возможны два принципиально различающихся режима обработки запросов с рабочей станции или редактирования записей в базе данных:

С сервера последовательно пересылаются записи базы дан­ных на рабочую станцию, где производится собственно фильтрация записей и отбор необходимых;

Сервер сам отбирает необходимые записи из БД (реализует запрос) и пересылает их на рабочую станцию.

Во втором случае снижаются нагрузка на сеть и требования к рабочим станци­ям, но резко возрастают требования к вычислительной мощ­ности сервера. Тем не менее именно такой способ обработки запросов является наиболее эффективным. Указанный способ удовлетворения запросов с рабочих станций называется ре­жимом клиент-сервер, его реализуют специальные средства работы с современными сетевыми базами данных. В системах клиент-сервер обработка данных разделена между двумя объектами: клиентом и сервером. Клиент - это задача, рабочая станция, пользователь. Он может сформировать запрос для сервера: считать файл, осуществить поиск записи и т.п. Сервер - это устройство или компьютер, выполняющий обработку запроса. Он отвечает за хранение данных, организацию доступа к этим данным и передачу данных клиенту.

Принт-сервер. К компьютеру небольшой мощности под­ключается достаточно производительный принтер, на кото­ром может быть распечатана информация сразу с нескольких рабочих станций. Программное обеспечение организует оче­редь заданий на печать, а также идентифицирует отпечатан­ную информацию специальными страницами (закладками), которые разделяют печатные материалы различных пользо­вателей.

Почтовый сервер. На сервере хранится информация, от­правляемая и получаемая как по локальной сети, так и извне (например, по модему). В любое удобное для него время пользователь мо­жет просмотреть поступившую на его имя информацию или отправить через почтовый сервер свою.

Топологии

Топология – геометрическое отображение отношений в сети. По топологии ЛВС делятся: на общую шину, кольцо, звезду и др.

Топология “звезда”

Звездообразная топология сети – разновидность сети, где каждый терминал соединен с центральной станцией (рис. 2).

Эта топология взята из области больших электронных вычислительных ма­шин. Здесь файловый сервер находится в “центре”.

Достоинства сети:

Повреждение кабеля является проблемой для одного конкретного ком­пьютера и в целом не сказывается на работе сети;

Просто выполняется подключение, так как рабочая станция должна со­единяться только с сервером;

Механизмы защиты против несанкционированного доступа оптимальны;

Высокая скорость передачи данных от рабочей станции к серверу, так как оба ПК непосредственно соединены друг с другом.

Недостатки:

В то время как передача данных от рабочей станции к серверу (и обрат­но) происходит быстро, скорость передачи данных между отдельными рабочими станциями мала;

Мощность всей сети зависит от возможностей сервера, если он недоста­точно оснащен или плохо сконфигурирован, то будет являться тормозом для всей системы;

Невозможна коммуникация между отдельными рабочими станциями без помощи сервера.

Рис 2. Топология типа “звезда”

Топология с сервером в центре, практически, не реализуется, так как в этом случае сервер должен иметь много сетевых адаптеров, рабочие станции подключаются к концентратору (хабу).

Кольцевая топология

Сеть типа “кольцо” – разновидность сети, в которой каждый терминал подключен к двум другим соседним терминалам кольца.

В этом случае все рабочие станции и сервер соединены друг с другом по коль­цу, по которому посылается информация, снабженная адресом получателя. Рабочие станции получают соответствующие данные, анализируя адрес по­сланного сообщения (рис. 3).

Рис. 3. Кольцевая топология

Достоинство сети типа “кольцо”:

Недостатки:

Время передачи данных увеличивается пропорционально числу соеди­ненных в кольцо компьютеров;

Каждая рабочая станция причастна к передаче данных, выход из строя одной станции может парализовать всю сеть, если не используются спе­циальные переходные соединения;

При подключении новых рабочих станций сеть должна быть кратковре­менно выключена.

Шинная топология

Такая сеть похожа на центральную линию, к которой подключены сервер и отдельные рабочие станции. Шинная топологии имела широкое распро­странение в прежние годы, что, прежде всего, можно объяснить небольшими потребностями в кабеле (рис. 4).

Рис. 4. Шинная топология

Достоинства шинной топологии:

Небольшие затраты на кабели;

Рабочие станции в любой момент времени могут быть установлены или отключены без прерывания работы всей сети;

Рабочие станции могут коммутироваться друг с другом без помощи сер­вера.

Недостатки:

При обрыве кабеля выходит из строя весь участок сети от места разрыва;

Возможность несанкционированного подключения к сети, поскольку для увеличения числа рабочих станций нет необходимости в прерывании ра­боты сети.

Комбинированная структура ЛВС

Наряду с известными топологиями вычислительных сетей: кольцо, звезда и шина – на практике применяется и комбинированная. Она образуется в основном в виде комбинаций вы­шеназванных топологий вычислительных сетей (рис. 5).

Рис 5. Комбинированная структура

Вычислительные сети с комбинированной структурой применяются там, где невозможно непосредственное применение базовых сетевых структур в чистом виде. Для подключения большого числа рабочих станций применяют сетевые усилители и(или) коммута­торы. Коммутатор, обладающий одновременно и функциями усилителя, на­зывают активным концентратором.

Пассивный концентратор обычно ис­пользуют как разветвитель. Он не нуждается в усилителе. Предпосылкой для подключения пассивного концентратора является то, что максимальное возможное расстояние до рабочей станции не должно превышать несколь­ких десятков метров.

Семиуровневая модель ЛВС

ЛВС должна иметь надежную и быструю систему передачи данных, стоимость которой должна быть меньше по сравнению со стоимостью подключаемых рабочих станций. Иными словами, стоимость передаваемой единицы информации должна быть значительно ниже стоимости обработки информации в рабочих станциях. Исходя из этого ЛВС, как система распределенных ресурсов, должна основываться на следующих принципах:

Единой передающей среды;

Единого метода управления;

Единых протоколов;

Гибкой модульной организации;

Информационной и программной совместимости.

Международная организация по стандартизации (ISO), основываясь на опыте многомашинных систем, который был накоплен в разных странах, выдвинула концепцию архитектуры открытых систем – эталонную модель, используемую при разработке международных стандартов.

На основе этой модели вычислительная сеть предстает как распределенная вычислительная среда, включающая в себя большое число разнообразных аппаратных и программных средств. По вертикали данная среда представляется рядом логических уровней, на каждый из которых возложена одна из задач сети. По горизонтали информационно-вычислительная среда делится на локальные части (открытые системы), отвечающие требованиям и стандартам структуры открытых систем.

Часть открытой системы, выполняющая некоторую функцию и входящая в состав того или иного уровня, называется объектом .

Правила, по которым осуществляется взаимодействие объектов одного и того же уровня, называются протоколом.

Протокол – набор правил и процедур, регламентирующий обмен данными.

Протоколы определяют порядок обмена информацией между сетевыми объектами. Они позволяют взаимодействующим рабочим станциям посылать друг другу вызовы, интерпретировать данные, обрабатывать ошибочные ситуации и выполнять множество других различных функций. Суть протоколов заключается в регламентированных обменах точно специфицированными командами и ответами на них (например, назначение физического уровня связи – передача блоков данных между двумя устройствами, подключенными к одной физической среде).

Для протокола передачи данных требуется следующая информация:

Синхронизация. Под синхронизацией понимают механизм распознавания начала блока данных и его конца.

Инициализация. Под инициализацией понимают установление соединения между взаимодейст­вующими партнерами. При условии, что приемник и передатчик используют один и тот же протокол, синхронизация устанавливается автоматически.

Блокирование. Под блокированием понимают разбиение передаваемой информации на блоки данных строго определенной максимальной длины (включая опо­знава­тельные знаки начала блока и его конца).

Адресация. Адресация обеспечивает идентификацию различного используемого оборудо­вания, которое обменивается друг с другом информацией во время взаимодей­ствия.

Обнаружение ошибок. Под обнаружением ошибок понимают установку и проверку контрольных битов.

Нумерация блоков. Текущая нумерация блоков позволяет установить ошибочно переда­ваемую или поте­рявшуюся информацию.

Управление потоком данных. Управление потоком данных служит для распределения и синхрони­зации ин­формаци­онных потоков. Так, например, если не хватает места в бу­фере устройства данных или данные не достаточно быстро обрабатыва­ются в периферийных устройст­вах, со­общения и(или) за­просы накапливаются.

Методы восстановления. После прерывания процесса передачи данных используют методы восстанов­ления, чтобы вернуться к определенному положению для повтор­ной передачи инфор­мации.

Разрешение доступа. Распределение, контроль и управление ограничениями доступа к данным вме­няются в обязанность пункта разрешения доступа (например, “только передача” или “только прием”).

Каждый уровень подразделяется на две части:

Спецификация услуг;

Спецификация протокола.

Спецификация услуг определяет, что делает уровень , а спецификация протокола - как он это делает . Причем каждый конкретный уровень может иметь более одного протокола.

Большое число уровней, используемых в модели, обеспечивает декомпозицию информационно-вычислительного процесса на простые составляющие. В свою очередь, увеличение числа уровней вызывает необходимость включения дополнительных связей в соответствии с дополнительными протоколами и интерфейсами. Интерфейсы (макрокоманды, программы) зависят от возможностей используемой ОС.

Международная организация по стандартизации предложила семиуровневую модель , которой соответствует и программная структура (рис. 6).

Рис 6. Уровни управления и протоколы ЛВС

Рассмотрим функции, выполняемые каждым уровнем программного обеспечения.

1. Физический – осуществляет как соединения с физическим каналом, так и отсоединение, управление каналом, а также определяет скорость передачи данных и топологию сети.

2. Канальный – осуществляет обрамление передаваемых массивов информации вспомогательными символами и контроль передаваемых данных. В ЛВС передаваемая информация разбивается на несколько пакетов или кадров. Каждый пакет содержит адреса источника и места назначения, а также средства обнаружения ошибок.

3. Сетевой – определяет маршрут передачи информации между сетями (ПЭВМ), обеспечивает обработку ошибок, а также управление потоками данных. Основная задача сетевого уровня - маршрутизация данных (передача данных между сетями). Специальные устройства – маршрутизаторы (Router) определяют для, какой сети предназначено то или другое сообщение, и направляют эту посылку в заданную сеть. Для определения абонента внутри сети используется адрес узла (Node Address). Для определения пути передачи данных между сетями на маршрутизаторах строятся таблицы маршрутов (Routing Tables) , содержащие последовательность передачи данных через маршрутизаторы. Каждый маршрут содержит адрес конечной сети, адрес следующего маршрутизатора и стоимость передачи данных по этому маршруту. При оценке стоимости могут учитываться количество промежуточных маршрутизаторов, время, необходимое на передачу данных, денежная стоимость передачи данных по линии связи. Для построения таблиц маршрутов наиболее часто используют либо метод векторов либо статический метод . При выборе оптимального маршрута применяют динамические или статические методы. На сетевом уровне возможно применение одной из двух процедур передачи пакетов:

датаграмм – когда часть сообщения или пакет независимо доставляется адресату по различным маршрутам, определяемым сложившейся динамикой в сети. При этом каждый пакет включает в себя полный заголовок с адресом получателя. Процедуры управления передачей таких пакетов по сети называются датаграммной службой;

виртуальных соединений – когда установление маршрута передачи всего сообщения от отправителя до получателя осуществляется с помощью специального служебного пакета – запроса на соединение. В таком случае для этого пакета выбирается маршрут и, при положительном ответе получателя на соединение закрепляется для всего последующего трафика (потока сообщений в сети передачи данных) и получается номер соответствующего виртуального канала (соединения) для дальнейшего использования его другими пакетами того же сообщения. Пакеты, которые передаются по одному виртуальному каналу, не являются независимыми и поэтому включают сокращенный заголовок, включающий порядковый номер пакета, принадлежащему одному сообщению. Недостатками по сравнению с датаграммой являются сложность в реализации, увеличение накладных расходов, вызванных установлением и разъединением сообщений.

4. Транспортный – связывает нижние уровни (физический, канальный, сетевой) с верхними уровнями, которые реализуются программными средствами. Этот уровень разделяет средства формирования данных в сети от средств их передачи. Здесь осуществляется разделение информации по определенной длине и уточняется адрес назначения. Транспортный уровень позволяет мультиплексировать передаваемые сообщения или соединения. Мультиплексирование сообщений позволяет передавать сообщения одновременно по нескольким линиям связи, а мультиплексирование соединений – передает в одной посылке несколько сообщений для различных соединений.

5. Сеансовый – на данном уровне осуществляется управление сеансами связи между двумя взаимодействующими пользователями (определяет начало и окончание сеанса связи: нормальное или аварийное; определяет время, длительность и режим сеанса связи; определяет точки синхронизации для промежуточного контроля и восстановления при передаче данных; восстанавливает соединение после ошибок во время сеанса связи без потери данных).

6. Представительский – управляет представлением данных в необходимой для программы пользователя форме, генерацию и интерпретацию взаимодействия процессов, кодирование/декодирование данных, в том числе компрессию и декомпрессию данных. На рабочих станциях могут использоваться различные операционные системы: DOS, UNIX, OS/2. Каждая из них имеет свою файловую систему, свои форматы хранения и обработки данных. Задачей данного уровня является преобразование данных при передаче информации в формат, который используется в информационной системе. При приеме данных этот уровень представления данных выполняет обратное преобразование. Таким образом, появляется возможность организовать обмен данными между станциями, на которых используются различные операционные системы. Форматы представления данных могут различаться по следующим признакам:

Порядок следования битов и размерность символа в битах;

Порядок следования байтов;

Представление и кодировка символов;

Структура и синтаксис файлов.

Компрессия или упаковка данных сокращает время передачи данных. Кодирование передаваемой информации обеспечивает защиту ее от перехвата.

7. Прикладной – в его ведении находятся прикладные сетевые программы, обслуживающие файлы, а также выполнение вычислительных, информационно-поисковых работ, логических преобразований информации, передачи почтовых сообщений и т.п. Главная задача этого уровня – обеспечение удобного интерфейса для пользователя.

На разных уровнях обмен происходит различными единицами информации: битами, кадрами, пакетами, сеансовыми сообщениями, пользовательскими сообщениями.

Протоколы передачи данных

В различных сетях существуют различные протоколы обмена данными. Наибольшее распространение получила конкретная реализация методов доступа в сетях типа Ethernet, Arcnet и Token-Ring.

Метод доступа в сетях Ethernet

Этот метод доступа, разработанный фирмой Xerox в 1975 году, пользуется наибольшей популярностью. Он обеспечивает высокую скорость передачи данных и надежность.

Сообщение, отправляемое одной рабочей станцией, принимается одновременно всеми остальными. Сообщение включает в себя адрес станции назначения и адрес станции отправителя. Та станция, которой предназначено сообщение, принимает его, остальные игнорируют.

Метод доступа в сетях Ethernet является методом множественного доступа с прослушиванием несущей и разрешением коллизий (конфликтов) (CSMA/CD - Carrier Sense Multiple Access/Collision Detection)

Перед началом передачи рабочая станция определяет, свободен канал или занят. Если канал свободен, станция начинает передачу. Ethernet не исключает возможности одновременной передачи сообщений двумя или несколькими станциями. Аппаратура автоматически распознает такие конфликты, называемые коллизиями. После обнаружения конфликта станции задерживают передачу на некоторое время, затем передача возобновляется.

Реально конфликты приводят к уменьшению быстродействия сети только в том случае, если в сети работают не менее 80-100 станций.

Метод доступа в сетях Arcnet

Этот метод доступа разработан фирмой Datapoint Corp. Он также получил широкое распространение в основном благодаря тому, что оборудование Arcnet дешевле, чем оборудование Ethernet или Token-Ring. Технология Arcnet используется в локальных сетях с топологией “звезда”. Один из компьютеров создает специальный маркер (сообщение специального вида), который последовательно передается от одного компьютера к другому.

Если станция желает передать сообщение другой станции, она должна дождаться маркера и добавить к нему сообщение, дополненное адресом отправителя и адресом станции назначения. Когда пакет дойдет до станции назначения, сообщение будет “отцеплено” от маркера и передано станции.

Метод доступа в сетях Token-Ring

  • Анализ состояния и эффективности образования и использования запасов сырья и материалов на предприятии: цель, информационная база, система показателей, методика проведения.

  • В этом уроке мы рассмотрим дополнительные возможности стандартной редакции MS Project 2002. Основная тема урока - управление несколькими проектами. Вы узнаете, как избежать конфликтов при распределении ресурсов между проектами и как планировать выполнение взаимосвязанных проектов. Кроме того, вы научитесь одновременно анализировать данные нескольких проектов, объединяя их в общем представлении или отчете.

    Вы освоите удобные приемы работы с группами файлов проектов и узнаете, как сохранять рабочую область, создавать базы данных проектов и готовить шаблоны для создания новых планов проектов на их основе. Кроме того, вы узнаете, как настраивать Консультанта MS Project 2002 и как работать с программными надстройками.

    Одновременное управление несколькими проектами в рамках организации осложняется тем, что сотрудники и материальные ресурсы должны назначаться на задачи так, чтобы назначения одних проектов не противоречили другим. Например, нельзя выделить сотрудника на задачу 1 июля, если в этот день он уже задействован в другом проекте.

    От согласованности ресурсного планирования зависит успешное выполнение проектов в организации. Чтобы обеспечить эту согласованность, в MS Project включена возможность использовать при планировании нескольких проектов единый список ресурсов, хранящийся в отдельном файле, - так называемый Resource Pool (Пул ресурсов).

    Настройка пула ресурсов

    Чтобы согласовать ресурсное планирование, нужно создать обычный файл проекта в формате *.mрр и поместить в него все данные о ресурсах. Затем создаются проекты с планами, и в них указывается, что при планировании будут использоваться ресурсы из первого файла, который в терминах MS Project называется пулам ресурсов (resource pool). В качестве примера мы создали файл пула pool. mpp и два файла с планами, где должны использоваться ресурсы пула -1.mpp и 2.mрр.

    Чтобы определить пул ресурсов для использования в плане проекта, нужно открыть и файл с планом, и файл с пулом (в нашем случае - открыть файлы 1.mрр и pool.mрр). Затем, находясь в окне файла с планом, следует выбрать команду меню Tools > Resource Sharing > Share Resources (Сервис > Общие ресурсы > Доступ к ресурсам). После этого открывается диалоговое окно определения общего доступа к ресурсам, в котором настраиваются параметры работы с пулом (рис. 23.1).

    Чтобы включить режим использования пула ресурсов, в этом диалоговом окне необходимо выбрать переключатель Use resources (Использовать ресурсы), а затем выбрать название файла проекта в раскрывающемся списке. Например, для файла 1.mpp мы указали файл pool.mрркак пул ресурсов.

    Рис. 23.1. Настройка использования пула ресурсов

    ПРИМЕЧАНИЕ

    Файл, в котором используются ресурсы из пула, называется клиентом пула (sharer). Клиент пула не может быть пулом ресурсов для другого плана проекта.

    Когда клиент подключается к пулу, начинается синхронизация данных: все ресурсы копируются в файл клиента, и с ними можно работать, как с обычными ресурсами проекта - редактировать их свойства, добавлять и удалять и т. д. При назначении ресурсов на задачи плана сведения о назначениях копируются в файл пула.

    Может случиться так, что после редактирования данных в файле клиента состав и свойства ресурсов клиента будут отличаться от состава и свойств ресурсов пула. В таком случае при синхронизации клиента и пула программе нужно определять, какой файл имеет преимущество. Если преимущество имеет пул, то данные клиента приводятся в соответствии с данными пула, если же клиент имеет преимущество, то обновляется пул в соответствии с даиными клиента.

    ВНИМАНИЕ

    Данные о назначениях ресурсов пула всегда переносятся из файла клиента в файл пула, независимо от преимущества.

    Чтобы определить, какой файл будет иметь преимущество при конфликтах, в диалоговом окне нужно выбрать либо переключатель Pool takes precedence (Преимущество имеет пул), либо переключатель Sharer takes precedence (Преимущество имеет клиент пула). Обычно выбирается первый переключатель, поскольку он исключает возможность внесения в пул несогласованных или случайных изменений. Часто пул размещается на сетевом диске и права на его изменение есть у ограниченного круга лиц. В таком случае, если у вас нет прав на изменение пула, вам подходит только первый вариант.

    Чтобы в дальнейшем изменить настройки использования пула, нужно снова открыть это диалоговое окно. Выбрав перключатель Use own resources (Использовать собственные ресурсы), можно будет отказаться от использования пула. После этого в проекте останутся только те ресурсы, которые назначены на его задачи, а остальные будут удалены.

    Можно изменить и настройки относительного преимущества файлов при конфликтах. Например, если вы отредактировали данные о ресурсе в файле клиента пула и хотите, чтобы они сохранились в пуле при синхронизации, следует открыть диалоговое окно и выбрать переключатель Sharer takes precedence (Преимущество имеет клиент пула). После синхронизации, когда измененные данные сохранились в пуле, нужно вновь открыть диалоговое окно и выбрать переключатель Pool takes precedence (Преимущество имеет пул), чтобы в дальнейшем пул вновь имел приоритет.

    Планирование с использованием пула

    После того как списки ресурсов клиента и пула синхронизированы, выделение ресурсов на задачи в файле клиента осуществляется обычным способом. При этом MS Project учитывает данные о назначениях ресурсов в других проектах. Рассмотрим работу с одним ресурсом в двух проектах на примере наших файлов 1.mpp и 2.mрр, использующих ресурсы пула pool.mрр. В первом проекте мы создали задачу длительностью 5 дней, назвали ее 1_1 и выделили на ее исполнение Иванова А.А. Затем во втором проекте мы также создали задачу длительностью 5 дней и назвали ее 2_1. Оба проекта начинаются в один день, и поэтому эта задача запланирована на то же время, что и задача 1_1.

    Теперь попробуем выделить ресурс на задачу 2_1. Для этого воспользуемся диалоговым окном назначения ресурсов (см. раздел «Замена ресурсов») , которое открывается с помощью одноименной кнопки стандартной панели инструментов или команды меню Tools > Assign Resources (Сервис > Назначить ресурсы). Чтобы отобрать только доступных в нужное нам время сотрудников, установим флажок Available to work (Доступные не менее) и в счетчике введем 40 часов, поскольку наша задача длится именно столько. Ресурс Иванов А.А., на это время уже назначенный на задачу в другом проекте, сразу пропадает из списка, и программа не предлагает назначить его на исполнение задачи (рис. 23.2).

    Если в проекте включен режим автоматического выравнивания ресурсов (см. раздел«Анализ и выравнивание загрузки ресурсов»), то MS Project автоматически перенесет задачу на другое время, если назначенный на ее исполнение ресурс уже выделен в это время на исполнение другой задачи в другом проекте, подключенном к пулу.

    Вы можете попробовать включить этот режим в файле 2.mррназначить Иванова А.А. на исполнение задачи 2_1. Задача автоматически будет перенесена на неделю вперед, то есть на время окончания задачи 1_1 в плане проекта 1.mрр. Если же вы отключите автоматическое выравнивание ресурсов и затем откроете представление Resource Sheet (Лист ресурсов), то увидите, что MS Project определил превышение доступности у Иванова А.А.

    Как программа определяет, в какое время ресурс загружен в других проектах? Дело в том, что сводные данные о загрузке ресурсов во всех клиентах пула содержатся в пуле, и когда он открыт, эти сведения доступны.

    Чтобы просмотреть информацию о загрузке ресурса и учесть ее при планировании, нужно открыть представление Resource Usage (Использование ресурсов) в файле клиента пула (при этом файл пула также должен быть открыт в MS Project). В нем для каждого ресурса указаны все задачи, в которых он задействован. Чтобы определить, к какому проекту относится та или иная задача, в таблицу необходимо добавить столбец Project (Проект).

    Рис. 23.2. Программа определяет, кого можно назначить на исполнение задачи

    Этот столбец может относиться как к ресурсам, так и к задачам. В файле 2.mрр(рис. 23.3) мы добавили его в таблицу, и в нем видно, что ресурсы относятся к проекту poo1.mpp, а задача 1_1, в которой задействован Иванов А.А. - к проекту 1.mрр. Мы просматриваем данные в файле 2.mрр, но на диаграмме видно, что в нем хранятся данные, относящиеся к загрузке ресурса в файле 1.mрр. В списке отображаются и не назначенные задачи во всех клиентах пула, например не назначена задача 2_1 из файла 2.mрр

    Рис. 23.3. Данные о загрузке ресурса в других проектах - клиентах пула отображаются в каждом проекте, если загружен пул

    Использование пула

    При открытии файла плана проекта, использующего ресурсы из пула, появляется диалоговое окно, с помощью которого вместе с файлом можно открыть и файл пула (рис. 23.4).

    Рис. 23.4. Диалоговое окно для открытия файла пула вместе с планом проекта

    Диалоговое окно содержит два переключателя, и если выбрать верхний, то вместе с планом проекта MS Project загрузит файл пула. Если же выбрать нижний переключатель, то программа откроет только файл с планом проекта.

    Если вы открываете файл проекта для планирования, лучше всегда выбирать верхний переключатель, ведь просматривать загрузку ресурса в других проектах можно лишь при открытом пуле. Кроме того, только при открытом файле пула в него можно вносить изменения.

    ПРИМЕЧАНИЕ

    При открытии пула с помощью верхнего переключателя, представленного на рис. 23.4, пул открывается в режиме для чтения.

    Совместная работа с пулом

    Если один файл будет одновременно редактироваться несколькими пользователями, это приведет к конфликту при его сохранении, и данные одного из пользователей, скорее всего, пропадут. Поэтому MS Project не позволяет открывать пул ресурсов для записи одновременно двум пользователям.

    При открытии файла пула программа запрашивает, в каком режиме открыть файл: записи или только чтения. Если вы выберете режим записи, то никто, кроме вас, не сможет вносить изменения в файл пула. Если же открыть файл пула для чтения, то вы сможете вносить в него изменения, только если он не открыт для записи другим пользователем.

    Для открытия файла в режиме чтения предназначен верхний переключатель диалогового окна, представленного на рис. 23.5, а для открытия в режиме записи - средний.

    Если пул открыт в режиме записи, то данные в нем можно редактировать обычным способом. Если же вы открыли пул для чтения, то его нужно обновить после того, как вы изменили план проекта, иначе данные о новых назначениях ресурсов не попадут в пул и не будут доступны в других файлах - клиентах пула. Для обновления пула с учетом проектных данных предназначена команда меню Tools > Resource Sharing > Update Resource Pool (Сервис > Общие ресурсы > Обновить пул ресурсов). Эта команда доступна, только когда файл пула открыт для чтения. Если файл пула открыт на запись, то он обновляется автоматически и эта команда меню не используется.

    При выборе этой комады меню MS Project открывает файл пула на запись, обновляет данные пула, а затем снова открывает его на чтение. Такой режим позволяет вносить изменения в пул нескольким пользователям попеременно.

    Чтобы обновить свойства ресурсов в пуле, когда тот открыт только на чтение, нужно обновить их в файле клиента пула, а затем в настройках использования пула (см. рис. 23.1) указать, что клиент имеет преимущество. В таком случае измененные сведения о ресурсах будут сохранены в пуле после его обновления.

    Если вы открыли пул только на чтение и работаете над планом, то помните, что кто-то другой может обновить пул описанным выше способом. Например, когда вы открыли файл плана, Петров был свободен в понедельник. Вы назначили ему на этот день задачу с полной загрузкой и продолжили работу над планом, не обновляя пул. В это время другой руководитель проекта тоже назначил Петрову задачу с полной загрузкой на понедельник, но обновил пул. В таком случае ваше назначение после того, как будет сохранено в пуле, приведет к превышению доступности Петрова.

    Чтобы исключить потенциальные конфликты во время работы над планом проекта, по окончании планирования необходимо обновить пул (то есть сохранить в нем данные своего плана), а затем обновить экран пула (то есть перенести в ваш план самые свежие данные из пула).

    Обновление экрана пула осуществляется с помощью команды меню Tools > Resource Sharing > Refresh Resource Pool (Сервис > Общие ресурсы > Обновить экран пула ресурсов).

    При выборе этой команды меню MS Project заново открывает файл пула, и вам оказываются доступны изменения, внесенные в него другими пользователями. Обычно после обновления экрана пула в плане происходят изменения: некоторые ресурсы оказываются перегруженными или изменяются затраты на проект. Чтобы найти изменения, можно перед обновлением экрана пула сохранить версию плана а затем, используя автоматизированное сравнение (см. раздел «Файлы MS Project»), сравнить ее с той, что получилась после обновления экрана пула.

    Project Professional 2019 Project Professional 2016 Project 2010 Project 2007 Project Online Desktop Client Project Professional 2013 Project Standard 2007 Project Standard 2010 Project Standard 2013 Project Standard 2016 Project Standard 2019 More... Less

    Knowing who’s available to work on your project can become a challenge when you’re working across multiple projects.

    If you assign the same people to several projects or use shared resources in your project, it helps to combine all the resource information into a single central file called a resource pool. The resource pool is also useful for identifying assignment conflicts, and viewing time allocation for each project.

    Create a resource pool

    Note: If you use Project Professional and resources exist in your organization"s enterprise resource pool, you don"t need to create another resource pool. See for more information.

    Open Project, click Blank Project > Resource tab.

    Click the arrow next to Team Planner and click Resource Sheet .

    Click Add Resources and import existing resource information.

    To type in new people information, click Work Resource and add Resource Name and details.

    Note: In Project 2007, choose View > Resource Sheet , and then add resources with the type Work .

    Note: If you’re using Project Professional with Project Server, you’ll have access to the enterprise resources. To learn more about Project versions, see Project Version Comparison . The enterprise resource list is usually managed by an administrator, and each project manager can add from these resources to their projects.

    After you create a shared resource pool, the information for each shared project comes from this resource pool, and all information like assignments, cost rates and availability are in this central location.

    Use the resource pool Working with resource usage information

    You can view and update the resource pool file from your current project (sharer file). It’s a good practice to periodically update and view resources to get the latest information on allocations and its impact on your projects.

    Note: To directly edit a resource pool file, you’ll need read/write access to that file. Otherwise you can only view resource usage and make changes to your project’s resources.

    Stop sharing resources

    If your project shares resources from a resource pool or from another project file, you can disconnect it from that other file. Resources with assignments in your project file remain in the project after the file is disconnected from the resource pool or other project file, but the other resources from the resource pool or other file are no longer available.

    Note: Usually you don"t want the task assignments to be retained within the resource pool after you disconnect the sharer file. However, assignments will be retained if you disconnect your sharer file from the resource pool when the resource pool isn"t open, or if you don"t save the resource pool after you disconnect the sharer file. To remove the retained assignments from the pool, disconnect the sharer file from within the resource pool file, and all task assignment information is deleted from the resource pool without affecting the former sharer file. If there are already leftover tasks in your resource pool, reconnect the sharer file to the resource pool and disconnect it again.

    Disconnect the active sharing file from its resource pool

    You can disconnect the active project file from the resource pool or other file that it is connected to and sharing resources with.

    Open the resource pool that contains the resources that you are sharing.

    In the Open Resource Pool dialog box, click Open resource pool read/write so that you can change resource information . Keep in mind that opening the pool with read/write permission keeps others from updating the pool with new information.

    Open your project.

    Choose Resource > Resource Pool > Share Resources . (In Project 2007, choose Tools > Resource Sharing > Share Resources .)

    Click Use own resources , and then click OK .

    Save both project files.

    Learn more about resource pools

    A resource pool makes it easier for you to administer people or equipment assigned to tasks in more than one project file. The resource pool centralizes resource information, such as the resource name, calendar used, resource units, and cost rate tables.

    Each project that uses resources from the resource pool is called a sharer file.

    Tip: Create a new (separate) project file just for resource information. This will make it easier for you to manage resource information and task assignments between the sharer files and the resource pool.

    Before a resource pool is created, each project contains its own resource information. Some of this information may overlap or even conflict with information about the same resources used in other projects.

    After a shared resource pool is created, the resource information in each project comes from the single resource pool. Assignment information, as well as cost rates and availability for all resources, reside in one central location.

    It is also easier to see resource overallocations caused by conflicting assignments across more than one project.