Ростелеком

Реле модуль подключение к Arduino. Подключение модуля управления реле к плате Ардуино. Делаем свет по хлопку

В этом опыте, мы будем управлять реле, точнее сказать не мы, а ардуино, и для этого попробуем воспользоваться полученными знаниями из предыдущих 12 уроков. Реле это электрически управляемый, механический переключатель. Внутри этого простенького на первый взгляд, пластмассового корпуса, находится мощный электромагнит, и когда он получает заряд энергии, происходит срабатывание, в результате чего якорь притягивается к электро магниту, контактная группа замыкает или размыкает цепь питания нагрузки. В этой схеме вы узнаете, как управлять реле, придав Arduino еще больше способностей!

На тот случай, если у вас в наборе идет не просто реле, а именно модуль, т.е уже собранная схема на печатной плате, Вам не нужно собирать схему (см. ниже), а нужно правильно подключить модуль к плате Arduino.

Реле и Электронный модуль Реле для Arduino на 5V.

VCC — питание +5 Вольт

GND — общий (земля) — минус.

IN1 — управление

NO — нормально разомкнутый (Normally Open)

NC — нормально замкнутый (Normally Closed)

COM — обший (Common)

К контактам NC и NO подключаются светодиоды, общий COM подключается к + питания (+5V), GND к земле (-), VCC к +5 Вольт, IN1 (управление, обозначение может быть другим) к порту ардуино Pin 2.

Когда реле выключено, общий контакт «COM» (common) будет подключен к нормально замкнутому контакту «NC» (Normally Closed). Когда же реле сработает «общий» контакт COM соединится с «нормально разомкнутым» контактом «NO» (Normally Open).

Выше, вы видите саму принципиальную схему к уроку 13, думаю сложностей возникнуть не должно, при правильном соединении, т.е соблюдая указания маркировки и «полюсность», все должно получиться.

Для этого опыта вам понадобится:

1. Arduino UNO — 1 шт.

2. Реле или «Электронный модуль Реле» — 1 шт.

3. Транзистор 2N222A — 1 шт.

4. Диод 1N4148 — 1 шт.

5. Резистор 330 Ом.

6. Светодиоды различных цветов — 2 шт.

7. Соединительные провода.

Cхема электрических соединений макетной платы и Arduino. Уроку 13. Arduino и Реле

Скачать код к опыту 13. Скетч и подробное описание (Обязательно прочтите весь скетч!):

Набор для экспериментов ArduinoKit
Код программы для опыта №13:

Вид созданного урока на макетной схеме:

Arduino и Реле. Урок 13

В результате проделанного опыта Вы должны увидеть…

Вы должны услышать щелчки переключающегося реле, а также увидеть два светодиода по переменно загорающимися с секундным интервалом. Если этого нет, — проверьте правильно ли вы собрали схему, и загружен ли код в Arduino.

Возможные трудности:

Светодиоды не светятся
Дважды проверьте правильность установки светодиодов, — длинный вывод является плюсовым контактом..

Не слышны щелчки реле
Проверьте правильность подключение реле и транзистора.

Срабатывает через раз
Проверьте надежность подключение реле, у реле, если это не электронный модуль очень короткие выводы, попробуйте слегка придавить его в макетную плату.

Всем удачи! Ждём ваши комментарии к ARDUINO УРОК 13 — ARDUINO УПРАВЛЯЕТ РЕЛЕ.

Рано или поздно появляется желание поуправлять чем-то более мощным чем светодиод, либо создать нечто на подобие умного дома своими руками. В этом нам поможет такая радио деталь как реле. В данной статье рассмотрим как реле подключается к микроконтроллеру, как им управлять, а также устроим демонстрацию его работы на примере включения лампы накаливания.

Используемые компоненты (купить в Китае):

. Управляющая плата

Устройство и принцип работы реле

Рассмотрим устройство реле на широко распространенном в области Arduino реле фирмы SONGLE SRD-05VDC.

Данное реле управляется напряжением 5V и способно коммутировать до 10А 30V DC и 10A 250V AC.

Реле имеет две раздельных цепи: цепь управления, представленная контактами А1, А2 и управляемая цепь, контакты 1, 2, 3. Цепи никак не связаны между собой.

Между контактами А1 и А2 установлен металлический сердечник, при протекании тока по которому к нему притягивается подвижный якорь(2). Контакты же 1 и 3 неподвижны. Стоит отметить что якорь подпружинен и пока мы не пропустим ток через сердечник, якорь будет удерживается прижатым к контакту 3. При подаче тока, как уже говорилось, сердечник превращается в электромагнит и притягивается к контакту 1. При обесточивании пружина снова возвращает якорь к контакту 3.

Подключение модуля к Arduino

В большинстве реле модулей для Ардуино используется N-канальное управление, его мы и рассмотрим. Для примера возьмем одноканальный модуль.

Далее приведу примерную схему данного модуля. Необходимыми для управления реле являются следующие детали: резистор(R1) , p-n-p транзистор(VT1) , диод(VD1) и, непосредственно само реле(Rel1) . Оставшиеся два светодиода установлены для индикации. LED1 (красный) - индикация подачи питания на модуль, загорание LED2 (зеленый) свидетельствует о замыкании реле.

Рассмотрим как работает схема. При включении контроллера выводы находятся в высокоомном состоянии, транзистор не открыт. Так как у нас транзистор p-n-p типа, то для его открытия нужно подать на базу минус. Для этого используем функцию digitalWrite (pin, LOW ); .Теперь транзистор открыт и через управляющую цепь течет ток и реле срабатывает. Для отключения реле следует закрыть транзистор, подав на базу плюс, вызвав функцию digitalWrite (pin, HIGH );. Можно сказать что управление реле модуля ничем не отличается от управления обычным светодиодом.

Модуль имеет 3 вывода (стандарта 2.54мм):

VCC: "+" питания

GND: "-" питания

IN: вывод входного сигнала

Подключение модуля предельно просто:

VCC на + 5 вольт на Ардуино.

GND на любой из GND пинов--- ардуино.

IN на любой из цифровых входов/выходов ардуино (в примерах подсоединено к 4).

Переходим непосредственно к скетчу. В данном примере реле будет включаться и выключаться с интервалом в 2 секунды.

пример программного кода:

// Реле модуль подключен к цифровому выводу 4 int Relay = 4; void setup () { pinMode (Relay, OUTPUT ); } void loop () { digitalWrite (Relay, LOW ); // реле включено delay (2000); digitalWrite (Relay, HIGH ); // реле выключено delay (2000); }

Для подключения лампы накаливания следует поставить реле в разрыв одного из проводов.

На нашем модуле контакты 1, 2, 3 расположены таким образом. Для подключения лампы накаливания следует поставить реле в разрыв одного из проводов.

Должно получиться так как показано на рисунке.

Пример включения лампы накаливания в связке с

P.S. Более дорогие модули имеют на своем борту еще и оптрон, который позволяет получить кроме развязки между управляемой и управляющей цепями реле еще и полную гальваническую развязку непосредственно между контроллером и цепью управления реле.

Подключить на прямую к Arduino мощную нагрузку, например лампу освещения или электронасос не получится. Микроконтроллер не обеспечивает необходимую мощность, для работы такой нагрузки. Ток, который может протекать через выходы Arduino, не превышает 10-15 мА. На помощь приходит реле, с помощью которого можно коммутировать большой ток. К тому же, если нагрузка питается от переменного тока, например 220v, то без реле ни как вообще не обойтись. Для подключения мощных нагрузок к Arduino через реле, обычно используют реле модули.

В зависимости от количества коммутируемых нагрузок, применяют одно-, двух-, трёх-, четырёх- и более канальные реле модули.

Свои, одно и четырёх канальные модули, я купил на Aliexpress, за $ 0,5 и $ 2.09 соответственно.

Устройство реле модуля для Arduino, на примере 4-х канального модуля HL-54S V1.0.

Рассмотрим более детально устройство данного модуля, по данной схеме обычно строятся все многоканальные модули.

Принципиальная схема модуля .

Для защиты выводов Ардуино от скачков напряжения в катушке реле, применяется транзистор J3Y и оптрон 817C. Обратите внимание, сигнал с пина In подаётся на катод оптрона. Это значит, для того что бы реле замкнуло контакты, нужно подать на пин In логический 0 (инвертированный сигнал).

Так же бывают модули, у которых сигнал с пина In подаётся на анод оптрона. В таком случае, нужно подать логическую 1 на пин In , для срабатывания реле.

Мощность нагрузки, которую могут включать / отключать модули, ограничивается установленными на плате реле.

В данном случае используются электромеханические реле Songle SRD-05VDC-SL-C , имеющее следующие характеристики:

Рабочее напряжение: 5 В
Рабочий ток катушки: 71 мА
Максимальный коммутируемый ток: 10А
Максимальное коммутируемое постоянное напряжение: 28 В
Максимальное коммутируемое переменное напряжение : 250 В
Рабочий температурный режим: от -25 до +70°C

Реле Songle SRD-05VDC-SL-C имеет 5 контактов. 1 и 2 питание реле. Группа контактов 3 и 4 представляют из себя нормально разомкнутые контакты (NO ), группа контактов 3 и 5 - нормально замкнутые (NC ).

Подобные реле бывают на различные напряжения: 3, 5, 6, 9, 12, 24, 48 В. В данном случае используется 5-вольтовый вариант, что позволяет питать реле-модуль непосредственно от Arduino.

На плате имеется перемычка (JDVcc ), для питания реле либо от Arduino, либо от отдельного источника питания.

Пинами In1 , In2 , In3 , In4 модуль подключается к цифровым выводам Arduino.

Подключение реле модуля HL-54S V1.0 к Arduino.

Поскольку у нас модуль с 5-вольтовыми реле, подключим его по такой схеме, питание возьмём от самой Ардуино. В примере подключу одно реле, в качестве нагрузки буду использовать лампочку на 220 в.

Для питания реле модуля от Arduino, перемычка должна замыкать пины «Vcc » и «JDVcc », обычно по-умолчанию она там и установлена.

Если у вас реле не на 5 вольт, питать от Ардуино модуль нельзя, питание нужно брать от отдельного источника.

Нижеприведённая схема показывает, как подключить питание модуля от отдельного источника. По такой схеме нужно подключать реле, рассчитанное на питание от более или менее чем 5 В. Для 5-вольтовых реле эта схема так же будет более предпочтительная.

При таком подключении нужно убрать перемычку между пинами «Vcc » и «JDVcc ». Далее пин «JDVcc » подключить к «+ » внешнего источника питания, пин «Gnd » подключить к «- » источника питания. Пин «Gnd », который в предыдущей схеме подключался к пину «Gnd » Ардуино, в данной схеме не подключается. В моём примере, внешний источник питания 5 В, если ваше реле рассчитано на другое напряжение (3, 12 ,24 В), выбираете соответствующее внешнее питание.

Скетч для управления реле модулем через Ардуино.

Зальём в Ардуино скетч, который будет сам включать и отключать лампочку (мигалка).

int relayPin = 7;

void setup() {
pinMode(relayPin, OUTPUT);
}

void loop() {
digitalWrite(relayPin, LOW);
delay(5000);
digitalWrite(relayPin, HIGH);
delay(5000);
}

В строке int relayPin = 7; указываем номер цифрового пина Arduino , к которому подключали пин In1 реле модуля. Можно подключить на любой цифровой пин и указать его в этой строке.

В строке delay(5000); можно менять значение времени, при котором лампочка будет гореть и при котором будет погашена.

В строке digitalWrite(relayPin, LOW); указано, при подаче логического нуля (LOW ), реле-модуль замкнёт контакты и лампочка будет гореть.

В строке digitalWrite(relayPin, HIGH); указано, при подаче логической единицы (HIGH ), реле-модуль разомкнёт контакты и лампочка погаснет.

Как видим, в строке digitalWrite(relayPin, LOW); оставили параметр LOW . Если реле замкнёт контакты и лампочка загорится, значит на пин In1 вам нужно подавать логический нуль, как и у меня. Если лампочка не загорится, зальём скетч, в котором заменим параметр LOW на HIGH.


Результат скетча на видео.

Теперь давайте добавим в схему тактовую кнопку и при нажатии на неё, реле-модуль будет включать лампочку.

Кнопку подключаем вместе с подтягивающим резистором на 10к, который не позволит внешним наводкам влиять на работу схемы.

Заливаем скетч

В строкеif(digitalRead(14)==HIGH) задаём номер цифрового пина, на котором подключена кнопка. Подключать можно на любой свободный. В примере эта аналоговый пин A0 , его же можно использовать в качестве цифрового 14 пина.

В строке delay(300); задаётся значение в миллисекундах. Это значение указывает, через какое время после нажатия или отпускание кнопки, нужно производить действия. Это защита от дребезга контактов.

Для информации! Все аналоговые входы от A0 (нумеруется как 14) до A5 (19), можно использовать как цифровые (Digital PWM ).

В заключении результат выполнения скетча на видео.

Более дешёвые реле-модули могут не содержать в своей схеме оптрона, как например в моём случае с одноканальным модулем.



Схема одноканального реле-модуля . Производитель сэкономил на оптроне, из-за чего Ардуино плата лишилась гальванической развязки. Для работы такой платы, на пин In нужно подавать логический нуль.

Подключение реле модуля к Arduino Due.

Arduino Due работает от 3,3 вольт, это максимальное напряжение, которое может быть на его вводах / выводах. Если будет более высокое напряжение, плата может сгореть.

Возникает вопрос, как подключить к реле модуль?

Убираем перемычку JDVcc. Подключаем пин «Vcc » на плате реле модуля к пину «3,3V » Arduino. Если реле рассчитано на 5 вольт, соединяем пин «GND » платы реле модуля, с пином «GND » Arduino Due. Пин «JDVcc » подключаем к пину «5V » на плате Arduino Due. Если реле рассчитано на другое напряжение, то питание к реле подключаем как на рисунке, в примере это 5 вольт. Если у вас многоканальный реле модуль, пожалуйста проверьте что бы «JDVcc » подключен к одной стороне всех реле. Оптопара активируется сигналом 3,3 В, которая в свою очередь активирует транзистор, используемый для включения реле.

Твердотельное реле из симистора для коммутации мощной нагрузки через Ардуино

Всем привет! Всё, что мы изучали до недавнего времени, были «учебными задачами». Пришло время поставить более серьёзную.

Микроконтроллер (далее – МК) может успешно управлять различными нагрузками (потребителями электроэнергии). Однако выполнять данные операции напрямую он не может. Поскольку напряжение, что протекает в сети на порядки отличается от напряжения, что в состоянии «выдать» МК.

В статье постарается разобраться со следующими пунктами:

  • подключение реле к МК (в нашем случае плата Arduino);
  • управление релейным модулем;
  • управление реальным потребителем электроэнергии;

Примечание: при работе с напряжением 220 В соблюдайте осторожность. Изолируйте все выполненные соединения. Перед включением в электросеть прозвоните мультиметром собранные стенд на предмет отсутствие короткого замыкания.

Перед тем, как переходит непосредственно к работе с релейным модулем, рассмотрим из чего состоит реле и как оно работает.

Управление модулем, на котором установлено реле осуществляется при помощи постоянного напряжения 5В. Модуль способен коммутировать 300 Вт (30В, 10А постоянки) и 2500 Вт (250В, 10А переменки).

Само реле состоит из двух цепей, что не связаны друг с другом. Первая цепь (управляющая) выводы А1, А2. Вторая цепь (управляемая) выводы 1, 2, 3.

Конструкция управляющей цепи следующая: между выводами А1 и А2 находится металлический сердечник, к которому в момент протекания по нему тока притягивается подвижный якорь 2. Выводы 1 и 3 неподвижны. Якорь фиксируется пружинной. В момент, когда ток не течёт по сердечнику, якорь прижат к контакту 3. Когда цепь замыкается и начинает протекать ток, якорь притягивается к контакту 1 и в этом момент звучит характерный «щелчок». После разрыва цепи пружина возвращает якорь на исходную позицию.

В качестве рабочего образца у меня имеется одноканальный релейный модуль.

Контакты в реле делятся на два типа:

  • нормально закрытый (НЗ) (пара 1-2);
  • нормально открытый (НО) (пара 2-3).

По условию НЗ разомкнут (не звонится мультиметром накоротко), а НО замкнут (звонится мультиметром накоротко). Подключаем разрыв фазы на нормально закрытую пару контактов.

Индикация:

  • Красный светодиод извещает пользователя о том, что на модуль подано питание;
  • Зеленый светодиод извещает пользователя о том, что реле замкнуто.

Принцип работы модуля.

В момент, когда мы включаем МК, его выводы находятся в высокоимпедансном состоянии (очень большое сопротивление), соответственно транзистор закрыт. Для открытия транзистора необходимо подать низкий уровень сигнала, иными словами 0 (касается транзистора p-n-p типа). После этого транзистор открывается и через первую (управляющую) цепь начинает протекать ток, в этот момент мы слышим характерный «щелчок». Чтобы выключить реле, нужно подать высокий уровень сигнала на транзистор.

Распиновка выводов модуля:

  • VCC — «+» питание;
  • GND — «-» земля;
  • IN — входной сигнал, что «рулит» релюшкой.

Подключаем релюшку к Arduino :

  • VCC «кидаем» на вывод 5В платы arduino.
  • GND «кидаем» на один из выводов GND платы arduino.
  • IN «кидаем» на 13 вывод платы arduino.

Для того, чтобы подключить потребитель электроэнергии (в моём случаем лампочку накаливания) реле ставим в разрыв одной из жил провода (ставить следует на фазу).

Испытательный стенд состоит из трёх частей:

  • Линия питания;

Цифровые пины на Arduino могут принимать значения high или low. Именно это свойство используется для управления большинством внешних двигателей, датчиков и т.п.

Но иногда возникают ограничения, связанные с тем, что устройсва требуют большие токи, чем может предоставить Arduino. Судя по спеку, платы Arduino предоставляют нам в распоряжение всего лишь 20 мА.

Если вы слишком часто будете работать с токами, которые превышают эти рекомендации, у вас не толь будет ненадежная электрическая цепь, но можно повредить и ваш контроллер Arduino.

Вместо этого вам надо подключать необходимую силу тока. Один из вариантов - использовать реле. Кроме этого, порой вам понадобятся и транзисторы, например, TIP122, который рассмотрен в этой статье.

Необходимые узлы

Основное преимущество данного подхода: его дешевизна.

Транзистор TIP122 можно найти в любом магазине радиотехнических деталей или заказать на Aliexpress, eBay.

Автоматические реле можно купить там же.

Описание транзистора TIP122 и его распиновка

TIP122 - это биполярный транзистор. То есть для базы надо обеспечить большее позитивное напряжение, чем на эмиттере, что позволит току поступать от эмиттера к коллектору. Расположение базы, эмиттера и коллектора TIP122 показаны на рисунке ниже.

Главное, что надо помнить об этом транзисторе - то, что он позволяет протекать току в 5 А от эмиттера через коллектор и 120 мА от эмиттера через базу.

Также очень круто то, что вы можете получить разницу в 100 В между коллектором и эмиттером и 100 вольт между коллектором и базой.

Не чересчур ли это? Для большинства проектов на Arduino - действительно чересчур. Но при этом они дешевые и когда появляется новая идея, не приходится заморачиваться и подбирать нужный транзистор, так как этот наверняка подойдет. Когда проект или конструкция апробирована, можно оптимизировать уже после тестового образца.

Автоматическое реле Bosch Cube. Распиновка и описание

Эти реле могут обеспечивать различные напряжения и силу тока. То реле, о котором пойдет речь дальше обеспечивает напряжение 12 В и силу тока 20/30 А. То есть, при замкнутых контактах сила тока составляет 20А, при разомкнутых - 30 А.

Кроме того, на моем реле сопротивление катушки примерно равно 95 Ом.

Сила тока, которая нужна для катушки гораздо больше чем та, которую может предоставить Arduino, но ее становится вполне достаточно после использования транзистора TIP122, который выдает 5 А.


Схема и описание подключения Arduino, TIP122 и реле

На электросхеме, которая приведена ниже, выход high D0 подключен к базе TIP122 и благодаря этому ток может проходить к пину 86 на реле. Благодаря этому подается питание на реле и в нем замыкаются контакты 30 и 87. После этого вы можете запитывать любое ваше внешнее устройство.


Пояснения к использованию и программа для Arduino, TIP122 и автоматического реле

В этом примере мы соберем небольшую схему, в которой Arduino используется для управления автоматическим реле. После загрузки скетча на микроконтроллер, реле включится на две секунды и отключится на две секунды. Это будет продолжаться, пока вы не отключите питание от вашей платы Arduino.

Схема подключения соответствует той, которую мы рассмотрели выше. Ниже представлен ее более наглядный вариант.


Скопируйте, вставьте скетч в Arduino IDE и загрузите его на Arduino.

Перед загрузкой программы отключите внешний источник питания.

// Тест: TIP122 и Arduino

int nRelayDrive = 0; // пин 0 у нас для управления реле

pinMode(nRelayDrive, OUTPUT); // объявляем реле в качестве выхода

digitalWrite(nRelayDrive, LOW); // включаем реле

digitalWrite(nRelayDrive, HIGH); // отключаем реле

Проверка

Отключите ваш USB кабель от персонального компьютера и подключите внешний источник питания к Arduino и реле. Дайте вашему миикроконтроллеру время для перезагрузки. Если все было сделано правильно, вы должны услышать характерный клик реле, которое будет замыкать и размыкать контакт через каждые две секунды.

P.S. В данном проекте в качестве источника питания использовался аккумулятор от машины на 12 Вольт, но можно использовать и другой.

Оставляйте Ваши комментарии, вопросы и делитесь личным опытом ниже. В дискуссии часто рождаются новые идеи и проекты!