Мтс

Коэффициент пульсации ламп освещения. Какой должен быть коэффициент пульсации светодиодных ламп. Пульсация, мерцание светодиодных ламп: причина и способы борьбы с ней

Огромным множеством преимуществ обладают полупроводниковые источники освещения, которые пользуются большим спросом среди населения. Одно из достоинств — это низкий коэффициент пульсации, например, у светодиодных лампочек. Интересно, что формирование зрения бывает только при воздействии солнечных лучей и отсутствии сторонних факторов. Так как цивилизация развивается, человечеству понадобилось больше дополнительных источников освещения. По этой причине изобрели первые лампочки накаливания. Далее из-за прогресса стали выпускаться более современные источники света. Однако совсем недавно ученые, исследуя, обратили внимание на такое явление, как пульсация, которая плохо сказывается на организме человека. Из-за таких сведений в местах, где регулярно бывают люди, а также в детских учреждениях, запретили использовать некоторые виды лампочек. В этой статье мы расскажем, что собой представляет пульсация светодиодных ламп, почему она возникает и как исправить мерцание самостоятельно.

Причины возникновения мерцания

Практически все лампы формируют эффект мерцания. Для того, чтобы решить, как исправить эту проблему важно знать, почему пульсируют лампы. Дело в том, что частота мерцания или пульсации выше крайней частоты слияния мельканий, которые глаз человека не воспринимает напрямую как мерцающий световой поток. Несмотря на это, негативное воздействие сказывается на самочувствии человека и вызывает повышенную утомленность. Чем чаще происходит пульсация, тем большее влияние на организм: начинается головная боль, а также быстрая усталость, что приводит к рассеянности человека, и он не может сфокусировать внимание на работе.

Лампами накаливания образуется наиболее сильное мерцание. По причине того, что мерцание в полной мере зависит от самого источника питания, в светодиодных лампах решили эту проблему с помощью применения драйвера, благодаря которому напряжение проходит в виде постоянного тока. Все же не все изготовители стали использовать качественные драйверы, которые способны снизить уровень импульса до нужного значения. Поэтому изготовленный товар имеет низкую себестоимость и в то же время плохое качество.

Иногда бывает так, что при покупке, лампочка светит хорошо без мерцаний, однако со временем мерцание появляется. Это говорит о том, что качество данного продукта низкое. Поэтому при покупке необходимо обращать внимание, указан ли в технических характеристиках коэффициент пульсации. Соответственно такой осветительный прибор стоит дороже.

Подробности о коэффициенте пульсации

Главная причина мерцания заключается коэффициенте пульсации. Это безразмерная величина, которая выражается в процентах и отображает уровень колебаний освещенности при варьировании светового потока. Источник света является основой, которая подключается к переменному току.

Благодаря проведенным исследованиям выяснилось, что при 10% коэффициенте пульсации появляется стробоскопический эффект, а он представляет собой оптический обман зрения. Появляется он из-за неправильного восприятия предметов, которые находятся в движении. Существуют нормы допустимой величины коэффициента пульсации. Значение должно быть в рамках от 5% до 20% в зависимости от обстоятельств, при которых происходит зрительная работа.

В тех местах, где больше всего находятся люди, коэффициент не может превышать:

  • Дошкольные детские учреждения – 10%.
  • Места, где находятся компьютеры – 5%.
  • Образовательные учреждения – 10%.
  • Места, где осуществляются высокоточные работы – 10%.

Коэффициент пульсации может происходить и на производственных предприятиях, а также в складских ангарах, то есть в местах, где люди могут быть только какое-то время, и где исключена возможность возникновения стробоскопического эффекта. Однако первый фактор способен привести к опасной ситуации, например, вращение детали может совпадать с мерцанием лампы. В такой ситуации деталь будет казаться в неподвижном положении, а из-за этого может возникнуть опасная ситуация, которая приведет к производственному травматизму.

Такие нормы были установлены недавно, и только в последнее время стали усиленно контролировать их соблюдение. На большинстве предприятий, а также в учебных заведениях освещение не отвечает санитарным нормам. Поэтому в следствии проверок все стали улучшать качество освещения.

Как проверить уровень пульсации

Важно знать, как определить уровень пульсации в LED светильниках. Это можно делать с помощью коэффициента, который рассматривался выше. Однако только в том случае, если подключение светодиодных ламп было осуществлено к переменному току, учитывая схему питания. Коэффициент варьирует в диапазоне 1-30%, охватывается весь диапазон.

Следует сделать измерение, которое позволит определить коэффициент пульсации. При измерении нужно учитывать два фактора:

  1. Так, как при постоянном токе коэффициент нулевой, а соответственно мерцание отсутствует полностью, то измерение следует проводить при переменном токе.
  2. Проверку или измерение следует осуществлять специальными приборами, а не простой фотокамерой. Она только фиксирует сам факт мерцания, но не вычисляет его величину. Следует использовать устройства, которые способны преобразить излучение. Например, можно использовать пульсометр-люксметр или многоканальный радиометр, а также другие похожие приборы. Для дополнительных подсчетов можно подключать эти устройства к компьютеру, и с помощью программы сделать вычисление.

Светодиоды могут мерцать даже в выключенном положении. Такое явление можно увидеть невооруженным глазом, и оно вызывает у человека дискомфорт. Однако моргать они могут и во включенном состоянии, и визуально это не ощущается. Поэтому следует знать, чем вредна пульсация светодиодных ламп. Такое мигание приносит большой вред, ведь невольно влияет на организм человека. Если лампочка мигает при работе, человек утомляется, у него возникает подавленное состояние и бессонница, и конечно же это плохо влияет на зрение.

На видео ниже наглядно показывается, как производится измерение пульсации светодиодных ламп от известных производителей:

К сожалению изготовители редко указывают информацию, которая показывает коэффициент пульсации. Но для того, чтобы проверить в домашних условиях нужно проводить тесты, которые фиксируют само мигание. Можно проверить это явление двумя способами.

  1. Самый простой способ с использованием карандаша. Необходимо включить только тестируемую светодиодную лампу и быстро помахать перед ней карандашом. В случае если виден сплошной след карандаша, то все в порядке, однако если след распадается на отрезки, то значит, что импульсы присущи.
  2. Можно также использовать фотокамеру. Не всегда будет под рукой фотоаппарат, поэтому необходимо знать, как проверить телефоном, ведь большинство из них оснащены камерой. Итак, камеру следует держать на расстоянии 1 метра от тестируемой светодиодной лампочки, если мигание присуще, то на экране будут темные полосы.

На видео ниже наглядно показывается, как определить мерцание светодиодных ламп при работе:

Способы устранения мерцания

Следует знать, как избавиться от мерцания светодиодных ламп. Необходимо устранить старый конденсатор на другой с большей емкостью. Однако подобрать конденсатор нужно и по габаритам, и по рабочему напряжению старого устройства. Конечно нужно знать, как устранить пульсацию, ведь в плате необходимо найти сам конденсатор, и уметь припаять новый. Все же этот вариант не всегда позволит полностью убрать проблему, однако нужно пробовать различные способы борьбы с ним.

Если посмотреть на светодиодную лампочку через смартфон или видеокамеру, то можно обнаружить сильное мерцание. Если оно отсутствует, то можно попробовать приблизиться к лампочке на расстояние 20-30 см. У качественных светодиодных ламп качественный драйвер, в результате никакого мерцания не будет (у некоторых некачественных ламп мерцание может появиться через месяц-другой).

Также проверить наличие мерцания можно и при помощи карандашного теста. Для этого нужно просто помахать карандашом и посмотреть, остается ли след.

И конечно же мерцание (пульсации) можно измерить при помощи специальной аппаратуры).

Мерцающие лампы стоит ставить в коридор, туалет и любое другое помещение, где не проводишь много времени.

Самой первой светодиодной лампой у меня была Ikea LEDARE GU10 (802.559.07). После галогенных светодиодные лампочки порадовали меня отсутствием ультрафиолетового излучения, а также отсутствием мерцания.

200 лм для лампочки конечно оказалось маловато. Но для чтения хватало 5 лампочек, причем благодаря направленному свечению спотовых светильников. Что интересно, одна из галогенная лампочек прожила 2 года, тогда как первые четыре сгорели менее, чем за год. Интересно, 4 светодиодные лампы в том же светильнике как-то продлевают срок службы пятой галогенной или нет?

Следующими приобрел пару ламп свечек Ikea Ledare 402.540.90 E14 7W 400lm. Цветопередача у этих икеевских ламп заметно лучше, чем у многих других. Да и 400 люмен - в два раза больше 200. Перед покупкой я боялся, что в светильнике с лампами, расположенным горизонтально полу, светодиодные свечки не справятся из-за ограниченного угла. Но светили они неплохо. Правда, они заметно шире обычных ламп накаливания, так что поместятся не в любой светильник. И все бы ничего, тем более при такой цене, но эти светодиодные лампы мерцают

Следующими приобрел десяток светодиодных лампочек Philips E27 8W 9290002488. Взял сразу много, потому что был уверен, что Филипс производит качественную продукцию, а цена на распродаже в Ашане составляла всего 159 рублей. Позже обнаружил, что лампочки были произведены еще в 2010 году. Хотя на коробке написано 600 люмен, они заметно тусклее икеевской лампы E27 с маркировкой 600 люмен. При этом лампа Икеа Ледаре еще и больше по размеру, да мощность у нее выше. Всё бы ничего, но данные светодиодные лампочки Philips мерцают

В потолочном светильнике Евросвет (Eurosvet) 4807/12 помимо 12 галогенных ламп G4 используется и светодиодная подсветка. Мерцание светодиодов также можно заметить на камеру.

При этом галогенные лампы G4 в этой люстре не получится заменить на светодиодные. G4 - наверное, самый неподходящий конструктив для изготовления светодиодных ламп. Уж слишком маленький размер, чтобы туда можно было поместить хорошо светящие и качественные диоды, чтобы они еще и нормально охлаждались. 3 Вт - это пока практический предел для такого корпуса именно из-за проблем с теплоотводом, причем даже такие лампы могут сгореть очень быстро.

Но помимо низкой освещенности, в данной люстре еще приходится столкнуться с тем, что трансформатор рассчитан на активную нагрузку. Даже если светодиодные лампы с ним заработают (в том числе, если часть ламп оставить галогенными), мерцание будет просто кошмарным.

Чтобы поставить в люстру с цоколем G4, рассчитанную на галогенные лампы, светодиодные лампы, потребуется установка импульсного стабилизированного блока питания.

А также другие светильники Евросвет с цоколем G4 и пультом дистанционного управления!

Родители после моих опытов со светодиодными лампами и значительным сокращением счетов за электричество, также решили их попробовать. В магазине им предложили лампочки Gauss Elementary. Стал читать про этот "бренд", пишут, что их продукция присутствует только в России. Страницы на немецком могут попадаться, но реального присутствия в магазинах и тестирования за рубежом якобы нет. Также прочитал, что это китайские лампы по сильно завышенной цене, не соответствующей качеству. Цена в 310 рублей за лампу мне действительно казалась слишком завышенной для середины прошлого года. К счастью, данные лампы вообще не мерцают, если смотреть через видеокамеру:

(обновление) Снял светодиодные лампы Gauss Elementary повторно. Мерцание очень хорошо видно. Интересно, оно появилось со временем (прошло всего пару месяцев), или просто при съемке в первый раз камера была слишком далеко?

А вот помимо надписи Gauss Elementary я ничего другого на лампе не обнаружил. У ламп Филипс и Икеа маркировка конечно намного подробнее.

После таких опытов у меня остается сомнение, стоит ли верить всяким "Интернет-знатокам". Хотя ammo1 измерил индекс цветопередачи светодиодных свечек EB103101106, и он оказался равен 72,8, при том что на коробке написано >90. Может, с той же маркировкой сейчас идут уже другие лампы, но это тогда вообще странный шаг. Да и другие лампочки Гаусс уже могут мерцать.

Что касается проблемы с мерцанием, то ее иногда можно решить. Например, один из покупателей Ikea Ledare e14 802.489.93 на входе после моста поставил дополнительно конденсатор 2.2 мкФ на 400вольт, а на выходе поменял 220мкФ на 50В. К сожалению, не понимаю в электронике, так что подтвердить это не могу. Но если решение такое простое, то почему его не использует производитель? Потому что конденсаторы высыхают, а лампочки сильно нагреваются и способствуют этому?

Тестирование лампочек проводят многие, но одного российского ресурса вроде ledbenchmark.com с самыми популярными светодиодными лампами пока нет.

Кстати, очень полезно на лампе маркером писать дату установки. В будущем это поможет с легкостью определить, как долго она проработала. 20, 30 и тем более 55 тысяч часов - это очень приличный срок, так что все позабудется через годы. Да и с такой надписью легче следить, не сгорела ли лампа до окончания гарантийного срока.

Что такое пульсации освещённости и яркости. Формула для расчёта пульсаций.

Коэффициент пульсаций освещённости характеризует колебания во времени светового потока, падающего на единицу поверхности. Коэффициент пульсаций освещённости определяется отношением амплитуды колебаний освещённости к их среднему значению и вычисляются по формуле:

где Емакс – максимальное значение освещённости за период её колебания, Емин – минимальное значение освещённости за период её колебания, Еср – среднее значение освещённости за тот же период.

В случае, когда анализируются пульсации от источников света, питающихся от сети переменного тока, т.е. форма пульсаций близка к синусоидальной, можно использовать упрощённую формулу для расчёта пульсаций:

В формуле (2) в качестве среднего берется среднеарифметическое значение. При использовании для расчёта пульсаций формулы (2), коэффициент пульсаций, очевидно, никогда не может превысить значение 100%. Если же при расчёте пульсаций в качестве среднего брать, например, среднеквадратичное значение, то, при наличии в измеряемом световом потоке коротких по времени, но больших по амплитуде пульсаций, рассчитанный по формуле (1) коэффициент пульсаций может значительно превысить 100%. Что, надо сказать, вполне допустимо. В недавно принятом новом ГОСТ Р 54945-2012 "Здания и сооружения. Методы измерения коэффициента пульсации освещенности" приведена общая формула для расчета коэффициента пульсации освещенности:

Таким образом, расчёт пульсаций по формуле (2) допустим только для светового потока, колебания которого близки к гармоническим. При наличии в световом потоке значительной импульсной составляющей необходимо для расчёта коэффициента пульсаций применять формулу (3). В общем случае, формулу (2) для расчета коэффициента пуьсации освещенности или яркости можно применять только при прямом подключении источника света к сети переменного тока или при использовании ЭМПРА. При использовании ЭПРА, электронных драйверов, регуляторов мощности (диммеров), а также при измерении коэффициента пульсации яркости мониторов, для расчета коэффициента пульсации следует применять формулу (3).

Влияние пульсаций на здоровье человека. Частота пульсаций. Частотный спектр пульсаций.

Широко распространено мнение, что человеческий глаз чувствует световые пульсации частота которых не превышает нескольких десятков Герц. На этом допущении построено воспроизведение видеоизображений в кино и телевидении – там частота смены кадров составляет 25 Гц, 50Гц и более, что воспринимается глазом человека как целостное во времени, плавно изменяющееся изображение. Дело в том, что мозг человека перестает успевать полноценно обрабатывать ту часть поступающей ему от органов зрения информации, которая изменяется с частотой выше нескольких десятков Герц.

Иными словами, если в воспринимаемой органами зрения человека информации присутствует пульсация освещённости или яркости, частотой ниже указанных, то она воздействует непосредственно на сетчатку глаза человека, затем поступает в зрительный тракт и уже через наружное коленчатое тело, зрительную радиацию, анализируется в первичной зрительной коре. В результате, мы можем описать условия получения зрительной информации: яркость и контраст изображения, цвета и оттенки, есть ли пульсации яркости или освещённости. Если же параметры изображения нас не устраивают, то мы пытаемся как-то приспособиться к их восприятию и, в конце концов, сознательно ограничиваем время визуального восприятия этой информации ввиду дискомфорта.

Однако медицинские исследования показали, что органы зрения и мозг человека продолжают воспринимать и реагировать на изменения воспринимаемой зрительной информации вплоть до частоты 300Гц. Такие изменения в воспринимаемой органами зрения информации оказывают уже невизуальное воздействие. В этом случае, свет, попадающий в глаз, проделывает путь к супрахиазматическим клеткам и паравентрикулярным ядрам гипоталамуса, а также к шишковидной железе. И тогда свет управляет уже нашим гормональным фоном, который влияет на циркадные (суточные) ритмы, эмоциональную сферу, работоспособность и многие другие аспекты жизнедеятельности. Многие, наверное, уже сталкивались с таким невизуальным воздействием пульсаций искусственного освещения в виде ощущения необъяснимого чувства дискомфорта, усталости или недомогания во, вроде бы, хорошо и ярко освещённых помещениях или при работе с компьютером.

Самое опасное в невизуальном воздействии света – это то, что мы не чувствуем напрямую его влияния на наш организм и не можем принять меры для уменьшения опасных последствий такого воздействия на наше здоровье. Невизуальное воздействие света может приводить к расстройству биологических ритмов человека и к "циркадным стрессам", которые, в свою очередь, могут приводить к развитию таких заболеваний, как депрессии, бессонница, паталогии сердечно-сосудистой системы и рак. По-видимому, невизуальное воздействие света на организм человека, заметно более глубокое, чем визуальное, хотя, оно ещё очень мало изучено.

Для светового потока, пульсация которого превышает частоту 300Гц, какого-либо заметного воздействия на организм человека выявлено не было, ввиду того, что на такие быстрые изменения интенсивности светового потока перестает уже реагировать сетчатка глаза человека.

Нормативные акты, устанавливающие требования к уровню пульсаций искусственного освещения

Измерения коэффициента пульсаций искусственного освещения.

Производители современных качественных светильников стараются удовлетворить требованиям нормативных документов, устанавливающих допустимые нормы коэффициента пульсаций освещённости и яркости. Однако, на рынке присутствует большое количество некачественных, контрафактных и несертифицированных должным образом светильников, в которых коэффициент пульсаций яркости намного превышает установленные нормы.

Таким образом, мы видим, что качественный пульсметр должен иметь хорошо сформированную частотную характеристику, чтобы обеспечить измерение коэффициента пульсации светового потока любых сигналов с частотами до 300 Гц и, одновременно, не реагировать на пульсации светового потока, частотой выше 300Гц, на которых работают качественные ПРА. Такую качественную частотную фильтрацию измеряемого светового потока можно осуществить цифровой обработкой сигнала, которая, например, реализована в фотоголовке ФГ-01, входящей в состав люксметров-пульсметров-яркомеров серии "Эколайт" . Амплитудно-частотная характеристика фотоголовки ФГ-01 приведена на Рис.1

Источники пульсаций. Типы ламп, ЭПРА. Причины пульсаций ламп. Методы борьбы с пульсациями.

Наличие пульсаций освещённости вызвано исключительно источниками искусственного света. Основными источниками искусственного света являются различные осветительные приборы, которые могут быть построены на различных типах ламп. На данный момент времени, в основном, используются три типа ламп - лампы накаливания, люминесцентные лампы и светодиодные лампы или светильники. Рассмотрим все три типа ламп с точки зрения уровня пульсаций света, ислучаемого ими.

Лампы накаливания - самый распространённый и давно известный тип осветительных приборов. Обычно работают напрямую от осветительной сети переменного тока напряжением 220 Вольт и частотой 50Гц. Ввиду того, что лампа накаливания излучает свет на обеих полуволнах переменного напряжения сети, её яркость изменяется с частотой 100Гц. Уровень пульсаций яркости лампы накаливания зависит от инерционности нити накаливания - т.е. того, насколько эта нить успевает нагреться и остыть в течение каждого полупериода питающего напряжения. В общем случае, чем выше мощность лампы накаливания, тем ниже значение коэффициента пульсации её яркости ввиду более массивной и, следовательно, инерционной нити накаливания.

К обычным лампам накаливания можно также отнести так называемые "галогенные" лампы, в которых в качестве светоизлучателя также выступает нить накаливания, а колба лампы заполнена инертным газом, улучшающим её характеристики. В таких лампах та же природа пульсаций светового потока, что и в обычных лампах накаливания, но есть некоторые особенности, связанные с разнообразием конструкций таких ламп и нет возможности указать прямую зависимость мощности галогенной лампы и значения коэффициента пульсаций её светового потока. Несколько результатов измерений коэффициента пульсаций яркости ламп накаливания приведены в Таблице 1.

Необходимо отметить, что лампы накаливания, в том числе и галогенные, допускают питание постоянным током (при условии соблюдения заявленных параметров мощности ламп). В случае питания ламп накаливания постоянным током, пульсация яркости у них отсутствуют.

Газоразрядные (люминесцентные) лампы в качестве источника света используют электрический разряд в газовой среде, энергия которого затем преобразуется в видимый свет при помощи специального состава (люминофора), нанесённого на стенки колбы люминесцентной лампы. В отличие от ламп накаливания, люминесцентные лампы могут работать только от переменного напряжения питания, необходимого для формирования электрического разряда. Поэтому, при работе люминесцентных ламп всегда присутствует пульсация света. Люминофор, нанесённый на стенки колбы лампы, в зависимости от своего состава, обладает некоторой инерционностью, которая в большей или меньшей степени сглаживает пульсации от электрического разряда в колбе люминесцентной лампы.

Большое значение для уровня пульсаций люминесцентной лампы имеет электрическая схема, управляющая работой люминесцентной лампы. В старых и дешёвых схемах с электромагнитными пускорегулирующими аппаратами (ЭмПРА) люминесцентные лампы получают питание из осветительной сети напряжением 220 Вольт и частотой 50 Гц. Поэтому яркость этих ламп пульсирует с частотой 100 Гц (т.к. люминесцентная лампа светит каждый полупериод питающего напряжения, частотой 50 Гц). В качественных современных светильниках на люминесцентных лампах используют электронные пускорегулирующие автоматы (ЭПРА), которые, при питании люминесцентных ламп, преобразуют входную частоту питающей сети в частоты выше тех, которые чувствует человек (т.е. больше 300 Гц). В малогабаритных люминесцентных лампах со стандартным цоколем, предназначенными для замены ламп накаливания, ЭПРА обычно входит в состав такой лампы.

Качественные ЭПРА обеспечивают оптимальные условия работы люминесцентных ламп, значительно уменьшая не только коэффициент пульсации света, излучаемого лампой, но и заметно повышая долговечность и эффективность работы люминесцентных ламп. Однако качество разных ЭПРА может сильно отличаться как в плане долговременной надёжности работы, так и по значению коэффициента пульсаций света, излучаемого подключённой лампой. Несколько результатов измерения коэффициента пульсаций яркости люминесцентных ламп приведены в Таблице 1.

Светодиодные лампы и светильники в качестве светоизлучающего элемента используют кристалл полупроводника. Физические принципы работы светодиода позволяют излучать им свет только одной длины волны, т.е. только одного определённого цвета, в зависимости от типа используемого полупроводника - от ближнего ультрафиолета, практически любой цвет видимого диапазона и до инфракрасного диапазона. Для создания светодиодных светильников белого цвета используют либо комбинированные многоцветные светодиоды, либо светодиоды, кристалл полупроводника которых покрыт слоем люминофора, переизлучающего белый свет.

Светодиоды могут работать как от переменного, так и постоянного питающего напряжения. При работе от постоянного питающего напряжения, пульсация излучаемого света у светодиодов отсутствует. При этом, светодиод излучает свет только при положительном напряжении между анодом и катодом. Это означает, что при подаче на светодиод напряжения частотой 50 Гц, он будет излучать свет только в положительные периоды питающего напряжения. Таким образом, частота пульсаций яркости светодиода составит 50Гц (Рис.2).

фотоголовки ФГ-01 Эколайт-АП ".

Одиночный светодиод начинает излучать свет, когда напряжение между его анодом и катодом достигает от 1,5 до 3 Вольт, т.е. при подключении одиночных или цепочек светодиодов к осветительной сети, напряжением 220 Вольт и частотой 50 Гц необходимо использовать понижающие преобразователи напряжения. Качественный преобразователь напряжения в светодиодном светильнике может обеспечить надёжную и экономичную работу светодиодного светильника без пульсаций светового потока. Однако часто встречаются некачественные преобразователи напряжения для светодиодных светильников, в результате которых светодиодные светильники не только работают плохо и недолговечно, но и обладают высокими значениями коэффициента пульсаций излучаемого света.

Влияние регуляторов мощности ламп (диммеров) на значение коэффициента пульсации.

Необходимо упомянуть о негативном влиянии на значение коэффициента пульсаций ламп устройств регулировки мощности (или яркости). Чаще всего в этом качестве используются тиристорные регуляторы (или диммеры). Их принцип работы основан на том, что питающее синусоидальное напряжение сети подается на лампу не непрерывно, а частями. Чем выше установлена яркость лампы, тем большая часть полупериода синусоидального питающего напряжения на нее подается, а чем ниже установлена яркость лампы, тем меньшая часть полупериода синусоидального питающего напряжения подается на лампу. Использование диммеров для регулировки яркости ламп приводит к увеличению коэффициента пульсаций. Вид пульсаций светового потока лампы накаливания при использовании диммера приведён на Рис.3.


Примечание. Все изображения формы (осциллограммы) пульсаций и их частотных характеристик выполнены при помощи фотоголовки ФГ-01 и бесплатно распространяемого ПО анализатора пульсаций светового потока "Эколайт-АП ".

Необходимо отметить, что использование диммера с лампами накаливания приводит только к увеличению коэффициента пульсаций яркости за счёт того, что, её нить успевает сильнее остыть за время отсутствия напряжения. При этом, для люминесцентных и светодиодных ламп с ЭПРА применение диммера вообще недопустимо, ввиду того, что он задает ЭПРА нештатный режим работы, что приводит не только к значительному увеличению коэффициента пульсаций яркости, но и к работе всего светильника в нештатном режиме, которая может закончится его поломкой.

В Таблице 1 приведены несколько типов ламп, которые были протестированы с помощью фотоголовки ФГ-01 люксметра-пульсметра-яркомера "Эколайт" на уровень коэффициента пульсаций. Мощность ламп регулировалась при помощи диммера. Хорошо видно, что использование диммера существенно ухудшает характеристики люминесцентных ламп. Максимальный уровень коэффициента пульсаций яркости светодиодной лампы объясняется, по-видимому, отсутствием в её конструкции качественного преобразователя напряжения.

Таблица 1. Зависимость коэффициента пульсаций яркости ламп разного типа от регулировки уровня их выходной мощности при помощи диммера.

Тип, мощность, описание лампы

Кп, % (мощность 100%)

Кп, % (мощность 50%)

Накаливания, 75 Вт 10,8 15
Накаливания, 60 Вт 11 15
Накаливания, 40 Вт 15,4 20
Галогенная, 60 Вт 13 16
Люминесцентная, цоколь, 9 Вт, тип 1 4,7 43,2
Люминесцентная, цоколь, 9 Вт, тип 2 4,5 15,9
Люминесцентная, цоколь, 11 Вт 7,3 15,8
Люминесцентная, ЛБ-40, 40 Вт, ЭмПРА 41,5 -
Люминесцентная, PL-9W, 9 Вт, ЭмПРА 42,2 -
Светодиодная, 1,5 Вт 100 100
Пульсации яркости мониторов. Причины наличия у мониторов пульсаций яркости. Пульсации ЭЛТ и ЖК мониторов. Биения. Методы борьбы с пульсациями мониторов.

Существующие санитарно-гигиенические нормативы содержат нормы на коэффициент пульсаций только для освещенности рабочего места. Однако нельзя не упомянуть о пульсациях яркости электронных средств отображения информации – в первую очередь о пульсациях яркости экранов, дисплеев и мониторов компьютеров, телевизоров, игровых приставок, терминалов, рекламных и информационных табло, пультов управления машинами и установками и т.п. Также пульсацией яркости обладают проекционные изображения от проекторов, на экранах кинотеатров и т.д. Необходимо отметить, что пульсация яркости устройств отображения информации оказывает намного более негативное влияние на самочувствие и здоровье человека, чем пульсация общей освещенности рабочего места по той причине, что человек вынужден внимательно вглядываться и вчитываться в представляемую на них информацию. Наличие пульсаций яркости у мониторов, дисплеев и т.п. приводит к быстрой утомляемости органов зрения и отделов мозга, отвечающих за восприятие и анализ зрительной информации. Воздействие пульсаций яркости экранов дисплеев и мониторов в течение длительного времени может привести к хроническим заболеваниям органов зрения

Природа пульсаций яркости экранов мониторов, дисплеев и других устройств отображения информации зависит от их конструкции. Наиболее распространены устройства на электронно-лучевых трубках (ЭЛТ) и плоскопанельные устройства на жидких кристаллах (ЖК, LCD, TFT и т.п.), светодиодах (LED, OLED и т.п.), "электронных чернилах" (E-Ink и т.п.).

В ЭЛТ-мониторах изображение создается пучком электронов, который построчно сканирует всю плоскость экрана монитора и формирует изображение, последовательно засвечивая пиксели люминофора, покрывающего внутреннюю поверхность ЭЛТ- экрана. Пульсация яркости у ЭЛТ-монитора вызвана тем фактом, что электронный пучок засвечивает текущую точку люминофора лишь на короткое время, после чего переходит к засветке следующей точки.

В следующий раз данная точка экрана ЭЛТ-монитора будет засвечена только после того, как электронный пучок просканирует весь кадр изображения. Таким образом, частота пульсаций яркости ЭЛТ- монитора равна частоте кадровой развёртки. Уровень коэффициента пульсаций яркости ЭЛТ-мониторов обычно очень близок к 100% (Рис.4).

Примечание. Все изображения формы (осциллограммы) пульсаций и их частотных характеристик выполнены при помощи фотоголовки ФГ-01 и бесплатно распространяемого ПО анализатора пульсаций светового потока "Эколайт-АП ".

Это по сути означает, что ЭЛТ-мониторы нельзя использовать для постоянной длительной работы, в компьютерных классах для обучения детей, в качестве устройств отображения информации для операторов опасных производств, диспетчеров на транспорте и авиации и прочих рабочих местах с повышенными требованиями к уровню внимания и реакции оператора.

В плоскопанельных мониторах, в отличие от ЭЛТ-мониторов, изображение практически всегда формируется статическим образом. То есть сформированный пиксель изображения постоянно сохраняет своё состояние до момента, когда это состояние требуется изменить. Таким образом, сам принцип формирования изображения в основной массе плоскопанельных дисплеев исключает появление пульсаций. Однако, в большинстве плоскопанельных устройств, используются системы задней подсветки. Эти системы подсветки представляют из себя системы специализированных газоразрядных ламп либо светодиодов со всеми особенностями работы, описанными в разделах про газоразрядные и светодиодные лампы. То есть, в зависимости от схемы управления подсветкой, может возникать значительная пульсация яркости подсветки. Необходимо заметить, что во всех моделях плоскопанельных дисплеев есть функция регулировки яркости задней подсветки. Наши исследования показали, что очень часто для регулировки яркости подсветки плоскопанельного дисплея используется импульсная модуляция, т.е. лампы подсветки периодически включаются на время, пропорциональное установленной яркости подсветки. Это приводит к появлению пульсаций яркости ламп подсветки у плоскопанельных мониторов. Причём в некоторых измеренных нами экземплярах мониторов компьютеров и ноутбуков коэффициент пульсации ламп подсветки при средних значениях яркости достигал 80% при частоте пульсаций 30Гц.

В отличие от ЭЛТ-мониторов, коэффициент пульсации ламп подсветки плоскопанельных дисплеев можно существенно снизить, выставив яркость подсветки экрана близкую к максимальной. Для установки комфортных значений яркости можно задействовать программные регулировки, не влияющие на лампы подсветки плоскопанельного монитора. К сожалению, программная регулировка яркости доступна только в компьютерах.

Пример пульсации ламп подсветки мониторов при разных уровнях выставленной яркости приведены на Рис.5 и Рис.6.



Примечание. Все изображения формы (осциллограммы) пульсаций и их частотных характеристик выполнены при помощи фотоголовки ФГ-01 и бесплатно распространяемого ПО анализатора пульсаций светового потока "Эколайт-АП ".

Нами были проведены измерения коэффициента пульсаций яркости мониторов у сотрудников нашей компании. Там, где были обнаружены пульсации яркости подсветки мониторов, и там, где была возможность, мы провели регулировку яркости ламп подсветки до уровней, когда коэффициент пульсации яркости подсветки минимален. После этих мероприятий все сотрудники отметили улучшение своего самочувствия, снижение утомляемости и повышение работоспособности при работе с монитором компьютера.

Наложение пульсаций. При оценке коэффициента пульсации яркости мониторов, необходимо помнить об эффекте наложения пульсаций от устройства отображения информации и пульсаций от источников искусственного освещения. Поскольку, свет от разных источников суммируется в каждой точке пространства и создает на поверхности экрана определённую освещенность, то от экрана монитора буде исходить суммарный световой поток (излучённый и отражённый) с пульсациями, частоты которых будут равны суммарной и разностной частотам пульсаций искусственного освещения и пульсациям от экрана монитора. Могут возникать, так называемые биения уровня яркости, выражающиеся в появлении низкочастотных пульсаций яркости монитора.

Эколайт-АП ", провести полный анализ регистрируемого светового потока по величине, уровню коэффициента пульсаций, форме пульсаций. Также есть возможность провести частотный анализ пульсаций светового потока и освещенности для выявления причин их возникновения. Примеры работы анализатора пульсаций приведены на Рис.2, 3, 4, 5, 6

У люксметра-пульсметра-яркомера "Эколайт" отдельно стоит отметить функцию "Измерение искусственной освещенности и коэффициента пульсаций в присутствии естественного освещения" , учитывающую уровень естественного освещения и позволяющую оператору проводить измерения искусственной освещенности и ПРАВИЛЬНЫЙ (!!!) расчет коэффициента пульсации искусственной освещенности в светлое время суток.

ВСЕ ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ СВЕТОВОЙ СРЕДЫ ◄

."◄

Коэффициент пульсации освещенности в осветительных установках. Метод расчета.

Пульсации светового потока возникают при питании источников света переменным или импульсным током. Человек зрительно различает пульсации светового потока с частотой, меньшей критической частоты слияния мельканий, лежащей в диапазоне от 35 до 60 Гц в зависимости от области сетчатки глаза, воспринимающей излучение: для фовеальной области КЧСМ составляет 40…55 Гц, для парафовеальной она возрастает до 55…60 Гц, на крайней периферии снижается до 35…40 Гц. Таким образом, пульсации светового потока сильнее заметны периферическим зрением.

СПИСОК ЛИТЕРАТУРЫ:

1. СП 52.13330.2011 Естественное и искусственное освещение. Актуализированная редакция СНиП 23-05-95*.
2. СанПиН 2.2.2/2.4.1340-03 «Гигиенические требования к персональным электронно-вычислительным машинам и организации работы».
3. ГОСТ Р 54945-2012 Здания и сооружения. Методы измерения коэффициента пульсации освещенности.
4. Справочная книга по светотехнике / Под ред. Ю.Б. Айзенберга. – 3-е изд., перераб. и доп. – М.: Знак. – 972 с: ил.

Прочитайте эту сатью для общего развития, там все доступно и интересно. Меня заинтересовал один конкреттный параметр: коэффициент пульсации. Цитата:
"Коэффициент пульсаций является очень важным показателем. Несмотря на то, что изменения яркости с частотой более 16 – 20 Гц наш мозг сознательно не обрабатывает, эффект от них вполне заметен. Существенные пульсации общей освещенности могут привести к повышенной утомляемости, мигреням, депрессиям и прочим малоприятным вещам по части психики. Нормируется этот показатель в СНиП 23-05-95. Там очень много разных таблиц, но, в целом, из них можно вынести, что коэффициент пульсаций общего освещения не должен превышать 20%."

Решил проверить, как обстоят дела с пульсацией ламп, которые у меня в квартире. Т.к., спец. оборудования у меня нет, проверял простейшим доступным способом: снимал каждую лампу на видео с близкого расстояния. Способ неточный, очень примерный, но тем не менее, может дать представление об уровне пульсации. Все фотографии сделаны телефоном, некоторые - скрины с видеороликов, сделанные им же. Поэтому цифр в посте не будет и на научность он не претендует. В будущем планирую скрестить компьютер с фотодиодом и превратить его в виртуальный осциллограф, показывающий реальный уровень пульсации. Как будут результаты, создам новый пост.

Расположил лампы в порядке ухудшения параметра.

1. Светодиодная лампа Gauss Elementary 6W Е14:

2. Пульсации не видны, световой поток ровный, не мерцающий:

3. Volpe 15W E27. Пульсация быстрая:

4. Эра 20W E27. Пульсация быстрая, но чуть медленнее и заметнее, чем у Volpe:

5. OSRAM Duluxstar. Пульсация достаточно медленная и неплохо заметная:

6. Jazzway 20W E27. Пульсация достаточно медленная и отчетливо видимая:

7. Галогенная лампа 35W 220V стандарта GU5,3. Пульсация отчетливо видна, но это и понятно - частота в сети 50 Гц:

8. Купленная на пробу светодиодная лампа Qeep 3,5W E14.

9. Медленная и отчетливая пульсация:

10. Светодиодная лампа Camelion 5,5W Е14:

11. Пульсации настолько ужасны, что я бы ее даже врагу не подарил:

12. И наконец, замыкает шит-парад изделие отечественного производителя IEK ЛПО - люминесцентная лампа, которая используется для освещения столешницы. Ее пульсации видны невооруженным взглядом. Но используется она редко:)

На объективность не претендую:) Если в чем-то не прав - поправляйте.