Ростелеком

Простейший объект фрактальной графики. Реферат по информатике на тему "фрактальная графика в специальных программных средствах"

Фрактальная графика , как и векторная, основана на математических вычислениях . Однако её базовым элементом является сама математическая формула , то есть никаких объектов в памяти компьютера не хранится и изображение строится исключительно по уравнениям либосистемам уравнений . Таким способом строят как простейшие регулярные структуры, так и сложные иллюстрации, имитирующие природные ландшафты и трехмерные объекты.

Определение . Фрактал - это объект, отдельные элементарные части которого повторяют (наследуют) свойства своих «родительских » структур.

Понятия фрактал и фрактальная геометрия (от лат. fractus - состоящий из фрагментов ) впервые были предложены в 1975 г. математиком Б.Мандельбротом для обозначения нерегулярных , но самоподобных структур . Рождение фрактальной геометрии связывают с выходом в 1977 г. его книги «Фрактальная геометрия природы», в которой были объединены в единую систему научные разработки учёных, работавших в этой области (Пуанкаре, Жюлиа, Кантор и др.). С точки зрения компьютерной графики фрактальная геометрия незаменима при задании линий и поверхностей достаточно сложной формы, а также при генерации объектов, образы которых весьма похожи на природные.

Одним из основных свойств фракталов является их самоподобие . В самом простом случае небольшая часть фрактала содержит информацию обо всём фрактале в целом. Существует большое разнообразие фракталов. Потенциально наиболее полезным их видом являются фракталы на основе системы итеративных функций (Iterated Function System – IFS ). Метод IFS , изобретённый Майклом Барнсли и его коллегами из Технологического института шт. Джорджия (США), применительно к построению фрактальных изображений базируется на самоподобии их отдельных элементов и заключается в моделировании всего рисунка несколькими меньшими его фрагментами . Специальные уравнения позволяют переносить, поворачивать и изменять масштаб отдельных участков изображения, служащих компоновочными блоками для остальной части картины в целом.

Самыми известными природными фрактальными объектами являются деревья , от каждой ветки которых ответвляются меньшие, похожие на нее, от тех - еще меньшие и так далее. Появление новых элементов меньшего масштаба происходит по достаточно простому алгоритму. Очевидно, что описать такой объект можно всего лишь несколькими математическими уравнениями. Фрактальными свойствами обладают также и многие другие природные объекты: снежинка при увеличении тоже оказывается фракталом, по фрактальным алгоритмам растут кристаллы, растения и т.д.

Посмотрим, как строится простейший фрактал - фрактальный треугольник, его еще называют «снежинка Коха » (рис. 8.2.). Используя простейший алгоритм, треугольники можно достраивать аналогичным образом до бесконечности, что приведёт к получению объекта любого уровня сложности. При этом в отличие от векторной графики, ничего кроме самих уравнений в памяти ком-пьютера хранить не нужно. Вся информация, необходимая для воспроизведения этого фрактала, будет занимать всего лишь несколько десятков байт. Возникает вопрос - а можно ли сжимать данные, подобрав для этого подходящий фрактальный алгоритм? Принципиально - можно, и в этом направлении в настоящее время ведутся активные исследования. Некоторые уже разработанные фрактальные алгоритмы позволяют сжимать определенные типы файлов в 30 раз и более.


8.6.Трехмерная (3D) графика.

Трехмерная графика нашла широкое применение в таких областях, как научные расчеты, инженерное проектирование, компьютерное моделирование физических объектов и т.п. В качестве примера рассмотрим наиболее сложный вариант трехмерного моделирования - создание подвижного изображения реального физического тела . В упрощенном виде для пространственного моделирования объекта требуется:

§ Спроектировать и создать виртуальный каркас скелет ») объекта, наиболее полно соответствующий его реальной форме;

§ Спроектировать и создать виртуальные материалы (текстуры ), по физическим свойствам визуализации похожие на реальные;

§ Наложить виртуальные материалы на различные части поверхности объекта (спроецировать текстуры на объект );

§ Настроить физические параметры пространства , в котором будет находиться объект, т.е. задать освещение, гравитацию, свойства атмосферы и т.д.;

§ Задать траекторию движения объекта;

§ Наложить поверхностные эффекты на итоговый анимационный сюжет.

Для создания реалистичной каркасной модели объекта используют геометрические примитивы (прямоуголь­ник, куб, шар, конус и прочие) и гладкие , так назы­ваемые сплайновые поверхности . В последнем случае вид поверхности определя­ется расположенной в пространстве сеткой опор­ных точек , каждой из которых присваивается коэф­фициент , задающий степень её влиянии на часть поверхности , расположенной вблизи опорной точки . От взаимного распо­ложения точек и величины коэффициентов зависит форма и гладкость поверх­ности в целом. Деформация объекта в общем случае обеспечивается перемещением отдельных контрольных точек каркаса , связанных с близлежащими опорными точками и влияющих на них в соответствии с удаленностью друг от друга. Специальный инструментарий позволяет обрабатывать примитивы, составляющие объект, как единое целое с учетом их взаимодействия на основе заданной физической модели.

После формирования «скелета » объекта необходимо покрыть его поверхность требуемыми материалами (текстурами). При этом осуществляется так называемая визуализация поверхности , т.е. расчет коэффициента её прозрачности, угла преломления лучей света на границе материала и окружающего пространства и т.д. Закраска поверхностей объекта осуществляется, как правило, метода­ми Гуро или Фонга,) представляющими собой специальные алгоритмы расчета и формирования цветовых оттенков отдельных частей этих поверхностей.

Из всех параметров пространства, в котором будет существовать создаваемый объект, с точки зрения визуализации самым важным является определение источников света . В трехмерной графике принято использовать виртуальные эквиваленты реальных физичес­ких световых источников, таких как, например, Солнце (удаленный неточечный источник ), электри­ческая лампочка (точечный источник ), естественная освещенность вне видимости Солнца и Луны (растворен­ный свет ), прожектор (направленный источник ).

После завершения конструирования и визуализации объекта приступают к его «оживлению », то есть заданию параметров движения. Компьютерная анимация базируется на ключевых кадрах изображения . В первом кадре объект выставляется в исходное положение. Через определенный промежуток (например, в пятом кадре) задается новая ориентация объекта и так далее до конечного положения. Промежуточные кадры вычисляются программно по специальному алгоритму. При этом происхо­дит не просто линейная аппроксимация, а плавное изменение положения опорных точек объекта в соответствии с заданными условиями, определяемыми законами взаимодействия объектов между собой, разрешенными плоскостями движения, предельными углами поворотов, величинами ускорений и скоростей и т.д. Такой подход называют методом инверсной кинематики движения . Он хорошо работает при моделировании различных механических устройств. В случае с имитацией живых объектов используют так называемые скелетные модели , когда создается некий каркас, подвижный в точках, характерных для моделируемого объекта. Движения этих точек просчитываются предыдущим методом, затем на каркас накладывается оболочка из смоделированных поверхностей и осуществляется их визуализация путем наложения текстур с учетом условий освещенности.

Наиболее совершенный метод анимации заключается в фиксации реальных движений физического объекта. Для этого на объекте закрепляют в контрольных точках источники света и снимают заданное движение на видео- или кинопленку. Затем координаты этих точек по кадрам переводят в компьютер и присваивают соответствующим опорным точкам каркасной модели . В результате движе­ния смоделированного объекта оказываются практически неотличимыми от движений живого прототипа.

Процесс расчета реалистичных изображений в компьютерной графике называют рендерингом (визуализацией ). Применение сложных математических моделей позволяет имитировать такие физи­ческие эффекты, как взрывы, дождь, огонь, дым, туман и т.д. Однако их применение в полном объеме требует достаточно больших вычислитель­ных ресурсов и поэтому в персональных компьютерах обычно реализуется лишь в упро­щенных вариантах. По завершении рендеринга компьютерную трехмерную анимацию используют либо как самостоятельный продукт, либо в качестве отдельных частей или кадров других продуктов.

Особую область трехмерного моделирования в режиме реального времени состав­ляют тренажеры технических средств - автомобилей, судов, летательных и кос­мических аппаратов. В них очень точно должны быть смоделированы технические параметры реальных объектов и свойства окружающей физической среды. В более простых вариантах, например при обучении вождению наземных транспортных средств, тре­нажеры могут быть реализованы и на персональных компьютерах.

Среди программных средств создания и обработки трехмерной графики для персональных компьютеров можно выделить три пакета:

§ 3D Studio Max (фирмаKinetix). Пакет считается полупрофессиональным, однако его ресурсов вполне хватает для разработки качественных трехмерных изображений объектов неживой природы. Его отличительными особенностями являются поддержка большинства существующих аппаратных ускорителей 3D -графики, мощные световые эффекты и большое число программных дополнений от сторонних фирм. Сравнительная нетребовательность к аппаратным ресурсам позволяет использовать 3D Studio Max даже на ПК среднего уровня. Вместе с тем по средствам моделирования и анимации он все же уступает более разви­тым современным программным средствам.

§ Softimage 3D (фирмаMicrosoft). Программа изначально создавалась для специализированных графических станций и лишь сравнительно недавно была конвертирована под операционную систему Windows NT. Её отличают богатые возможности моделирования, наличие большого числа регулируемых физических и кинематографических параметров, качественный и достаточно быстрый модуль для рендеринга и множество программных дополнений, значительно расширяющих функции пакета. Однако на платформе IBM PC Softimage 3D выглядит несколько тяжеловато и требует достаточно мощных аппаратных ресурсов.

§ Maya (фирмыAlias, Wavefront, TDI). Один из наиболее передовых пакетов в классе средств создания и обработки трехмерной графики для персональных компьютеров с точки зрения интерфейса и функциональных возможностей. Существует в вариантах для различных операционных систем, в том числе и Windows NT. Весь инструментарий Maya сведен в четыре группы: анимация (Animation ), моделирование (Modeling ), физическое моделирование (Dynamic ) и визуализация (Rendering ). Пакет имеет модульное построение и включает в себя программные блоки, обеспечивающие имитацию физических твердых тел, захват движения, обработку звука, обработку вирту­альных моделей методами, характерными для реальной работы скульпторов и художников, а также сопряжение реальных натурных съемок с компьютерной анимацией и т.д.

Фрактальная графика , как и векторная, основана на математических вычислениях . Однако её базовым элементом является сама математическая формула , то есть никаких объектов в памяти компьютера не хранится и изображение строится исключительно по уравнениям либосистемам уравнений . Таким способом строят как простейшие регулярные структуры, так и сложные иллюстрации, имитирующие природные ландшафты и трехмерные объекты.

Определение . Фрактал - это объект, отдельные элементарные части которого повторяют (наследуют) свойства своих «родительских » структур.

Понятия фрактал и фрактальная геометрия (от лат. fractus - состоящий из фрагментов ) впервые были предложены в 1975 г. математиком Б.Мандельбротом для обозначения нерегулярных , но самоподобных структур . Рождение фрактальной геометрии связывают с выходом в 1977 г. его книги «Фрактальная геометрия природы», в которой были объединены в единую систему научные разработки учёных, работавших в этой области (Пуанкаре, Жюлиа, Кантор и др.). С точки зрения компьютерной графики фрактальная геометрия незаменима при задании линий и поверхностей достаточно сложной формы, а также при генерации объектов, образы которых весьма похожи на природные.

Одним из основных свойств фракталов является их самоподобие . В самом простом случае небольшая часть фрактала содержит информацию обо всём фрактале в целом. Существует большое разнообразие фракталов. Потенциально наиболее полезным их видом являются фракталы на основе системы итеративных функций (Iterated Function System – IFS ). Метод IFS , изобретённый Майклом Барнсли и его коллегами из Технологического института шт. Джорджия (США), применительно к построению фрактальных изображений базируется на самоподобии их отдельных элементов и заключается в моделировании всего рисунка несколькими меньшими его фрагментами . Специальные уравнения позволяют переносить, поворачивать и изменять масштаб отдельных участков изображения, служащих компоновочными блоками для остальной части картины в целом.

Самыми известными природными фрактальными объектами являются деревья , от каждой ветки которых ответвляются меньшие, похожие на нее, от тех - еще меньшие и так далее. Появление новых элементов меньшего масштаба происходит по достаточно простому алгоритму. Очевидно, что описать такой объект можно всего лишь несколькими математическими уравнениями. Фрактальными свойствами обладают также и многие другие природные объекты: снежинка при увеличении тоже оказывается фракталом, по фрактальным алгоритмам растут кристаллы, растения и т.д.

Посмотрим, как строится простейший фрактал - фрактальный треугольник, его еще называют «снежинка Коха » (рис. 8.2.). Используя простейший алгоритм, треугольники можно достраивать аналогичным образом до бесконечности, что приведёт к получению объекта любого уровня сложности. При этом в отличие от векторной графики, ничего кроме самих уравнений в памяти ком-пьютера хранить не нужно. Вся информация, необходимая для воспроизведения этого фрактала, будет занимать всего лишь несколько десятков байт. Возникает вопрос - а можно ли сжимать данные, подобрав для этого подходящий фрактальный алгоритм? Принципиально - можно, и в этом направлении в настоящее время ведутся активные исследования. Некоторые уже разработанные фрактальные алгоритмы позволяют сжимать определенные типы файлов в 30 раз и более.

8.6.Трехмерная (3D) графика.

Трехмерная графика нашла широкое применение в таких областях, как научные расчеты, инженерное проектирование, компьютерное моделирование физических объектов и т.п. В качестве примера рассмотрим наиболее сложный вариант трехмерного моделирования - создание подвижного изображения реального физического тела . В упрощенном виде для пространственного моделирования объекта требуется:

§ Спроектировать и создать виртуальный каркас скелет ») объекта, наиболее полно соответствующий его реальной форме;

§ Спроектировать и создать виртуальные материалы (текстуры ), по физическим свойствам визуализации похожие на реальные;

§ Наложить виртуальные материалы на различные части поверхности объекта (спроецировать текстуры на объект );

§ Настроить физические параметры пространства , в котором будет находиться объект, т.е. задать освещение, гравитацию, свойства атмосферы и т.д.;

§ Задать траекторию движения объекта;

§ Наложить поверхностные эффекты на итоговый анимационный сюжет.

Для создания реалистичной каркасной модели объекта используют геометрические примитивы (прямоуголь­ник, куб, шар, конус и прочие) и гладкие , так назы­ваемые сплайновые поверхности . В последнем случае вид поверхности определя­ется расположенной в пространстве сеткой опор­ных точек , каждой из которых присваивается коэф­фициент , задающий степень её влиянии на часть поверхности , расположенной вблизи опорной точки . От взаимного распо­ложения точек и величины коэффициентов зависит форма и гладкость поверх­ности в целом. Деформация объекта в общем случае обеспечивается перемещением отдельных контрольных точек каркаса , связанных с близлежащими опорными точками и влияющих на них в соответствии с удаленностью друг от друга. Специальный инструментарий позволяет обрабатывать примитивы, составляющие объект, как единое целое с учетом их взаимодействия на основе заданной физической модели.

После формирования «скелета » объекта необходимо покрыть его поверхность требуемыми материалами (текстурами). При этом осуществляется так называемая визуализация поверхности , т.е. расчет коэффициента её прозрачности, угла преломления лучей света на границе материала и окружающего пространства и т.д. Закраска поверхностей объекта осуществляется, как правило, метода­ми Гуро или Фонга,) представляющими собой специальные алгоритмы расчета и формирования цветовых оттенков отдельных частей этих поверхностей.

Из всех параметров пространства, в котором будет существовать создаваемый объект, с точки зрения визуализации самым важным является определение источников света . В трехмерной графике принято использовать виртуальные эквиваленты реальных физичес­ких световых источников, таких как, например, Солнце (удаленный неточечный источник ), электри­ческая лампочка (точечный источник ), естественная освещенность вне видимости Солнца и Луны (растворен­ный свет ), прожектор (направленный источник ).

После завершения конструирования и визуализации объекта приступают к его «оживлению », то есть заданию параметров движения. Компьютерная анимация базируется на ключевых кадрах изображения . В первом кадре объект выставляется в исходное положение. Через определенный промежуток (например, в пятом кадре) задается новая ориентация объекта и так далее до конечного положения. Промежуточные кадры вычисляются программно по специальному алгоритму. При этом происхо­дит не просто линейная аппроксимация, а плавное изменение положения опорных точек объекта в соответствии с заданными условиями, определяемыми законами взаимодействия объектов между собой, разрешенными плоскостями движения, предельными углами поворотов, величинами ускорений и скоростей и т.д. Такой подход называют методом инверсной кинематики движения . Он хорошо работает при моделировании различных механических устройств. В случае с имитацией живых объектов используют так называемые скелетные модели , когда создается некий каркас, подвижный в точках, характерных для моделируемого объекта. Движения этих точек просчитываются предыдущим методом, затем на каркас накладывается оболочка из смоделированных поверхностей и осуществляется их визуализация путем наложения текстур с учетом условий освещенности.

Наиболее совершенный метод анимации заключается в фиксации реальных движений физического объекта. Для этого на объекте закрепляют в контрольных точках источники света и снимают заданное движение на видео- или кинопленку. Затем координаты этих точек по кадрам переводят в компьютер и присваивают соответствующим опорным точкам каркасной модели . В результате движе­ния смоделированного объекта оказываются практически неотличимыми от движений живого прототипа.

Процесс расчета реалистичных изображений в компьютерной графике называют рендерингом (визуализацией ). Применение сложных математических моделей позволяет имитировать такие физи­ческие эффекты, как взрывы, дождь, огонь, дым, туман и т.д. Однако их применение в полном объеме требует достаточно больших вычислитель­ных ресурсов и поэтому в персональных компьютерах обычно реализуется лишь в упро­щенных вариантах. По завершении рендеринга компьютерную трехмерную анимацию используют либо как самостоятельный продукт, либо в качестве отдельных частей или кадров других продуктов.

Особую область трехмерного моделирования в режиме реального времени состав­ляют тренажеры технических средств - автомобилей, судов, летательных и кос­мических аппаратов. В них очень точно должны быть смоделированы технические параметры реальных объектов и свойства окружающей физической среды. В более простых вариантах, например при обучении вождению наземных транспортных средств, тре­нажеры могут быть реализованы и на персональных компьютерах.

Среди программных средств создания и обработки трехмерной графики для персональных компьютеров можно выделить три пакета:

§ 3D Studio Max (фирмаKinetix). Пакет считается полупрофессиональным, однако его ресурсов вполне хватает для разработки качественных трехмерных изображений объектов неживой природы. Его отличительными особенностями являются поддержка большинства существующих аппаратных ускорителей 3D -графики, мощные световые эффекты и большое число программных дополнений от сторонних фирм. Сравнительная нетребовательность к аппаратным ресурсам позволяет использовать 3D Studio Max даже на ПК среднего уровня. Вместе с тем по средствам моделирования и анимации он все же уступает более разви­тым современным программным средствам.

§ Softimage 3D (фирмаMicrosoft). Программа изначально создавалась для специализированных графических станций и лишь сравнительно недавно была конвертирована под операционную систему Windows NT. Её отличают богатые возможности моделирования, наличие большого числа регулируемых физических и кинематографических параметров, качественный и достаточно быстрый модуль для рендеринга и множество программных дополнений, значительно расширяющих функции пакета. Однако на платформе IBM PC Softimage 3D выглядит несколько тяжеловато и требует достаточно мощных аппаратных ресурсов.

§ Maya (фирмыAlias, Wavefront, TDI). Один из наиболее передовых пакетов в классе средств создания и обработки трехмерной графики для персональных компьютеров с точки зрения интерфейса и функциональных возможностей. Существует в вариантах для различных операционных систем, в том числе и Windows NT. Весь инструментарий Maya сведен в четыре группы: анимация (Animation ), моделирование (Modeling ), физическое моделирование (Dynamic ) и визуализация (Rendering ). Пакет имеет модульное построение и включает в себя программные блоки, обеспечивающие имитацию физических твердых тел, захват движения, обработку звука, обработку вирту­альных моделей методами, характерными для реальной работы скульпторов и художников, а также сопряжение реальных натурных съемок с компьютерной анимацией и т.д.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Издательство СПбГПУ
УДК 681.3 (075) Рекомендовано к изданию Научно-методическим советом Псковского государственного политехнического института Рецензенты: - Ил

Основы информатики
1. Информация и информационные процессы Основные понятия: информация, информационные процессы, информационное общество, и

Информационные технологии
7. Технологии обработки текстовой информации Основные понятия: текстовый редактор и процессор, Формат текстового файла, Т


Типовая структура пользовательского интерфейса текстового процессора приведена на рис. 7.1 и она включает следующие элементы: § Строка главного меню содержит имена групп к

Текстовый файл. Основные элементы текстового документа
Утверждение. Текстовые файлы - наиболее простая и наглядная форма представления алфавитно-цифровой информации, позволяющая вводить, хранить, редактировать, читать на экране и печат

Этапы формирования текстового электронного документа
Любой текстовый документ в процессе своего формирования проходит следующие этапы (рис.7.2):) 1. Создание документа. 2. Вво

Редактирование текста
Операция редактированиятекста состоит в замене или корректировке неправильно введенных текстовых фрагментов, изменении некоторых атрибутов этих фрагментов и прочее. При выполнении

Выделение, удаление, копированиеи перемещение текста
Все эти перечисленные операции выполняются над отдельными символами, словами, фрагментами текста, абзацами целиком, страницами, несколькими страницами и даже документом в целом. Однако, необходимо

Поиск и замена фрагментов текста
Зачастую при форматировании текста возникает необходимость оперативного поиска и замены по всему набранному тексту документа неправильно набранных слов или словосочетаний, отдельных служебных симво

Стили и шаблоны
Наиболее мощным средством автоматизации форматирования в текстовых редакторах является механизм под названием «стиль». Известно два основных подхода к оформлению текстовог

Средства автоматизации ввода текста
При вводе текста эффективными средствами автоматизации являютсяавтозамена, автотекст, автопроверка орфографии и грамматики. Функция автозамена позволяет с

Автоматическое форматирование текстового документа
Под автоформатированиемпонимается автоматическое оформление текстового документа либо сразу при вводе текста, либо по окончании в случае активизации соответствующей команды. Систем

Создание таблиц
Определение. Таблица- это совокупность ячеек, расположенных в строках и столбцах, которые можно заполнять произвольным текстом или графикой.Ячейкойназывается прямо

Создание графических объектов с помощью встроенных средств
В современных текстовых процессорах можно создавать рисованные объекты, не закрывая документа, в который они должны быть, вставлены. Рисование происходит прямо в документе с использованием внутренн

Вставка объектов из других приложений
Как уже упоминалось, главным принципиальным достоинством современных текстовых процессоров является возможность создания сложных составных документов. Под сложным составным докумен

Основы издательского делопроизводства
Подготовка сложных составных документов к их изданию в виде брошюр, технических отчетов, сборников документов, журналов, книг и иной печатной продукции до недавнего времени достаточно сложным, труд

Теоретические основы представления графических данных
Представление компьютерных данных в графическом виде впервые было реализовано еще в середине 50-х годов 20-го века в задачах научных и военных исследований. С тех пор графический способ отображения

Форматы графических данных
В компьютерной графике используется несколько десятков различных форматов файлов для хранения изображений, но лишь часть из них стала стандартом и применяется в подавляющем большин

Растровая графика
Растровые изображения формируются в процессе преобразования графической инфор­мации из аналоговой формы в цифровую, например, при сканировании существующих на бумаге или фотоплен­к

Векторная графика
Векторные изображения формируются из объектов (точка, линия, окружность, треугольник, прямоугольник и пр.), которые хра­нятся в памяти компьютера в виде графических примити

Цвет и способы его описания
8.7.1. Понятие цвета и его характеристики.) Цвет чрезвычайно важен в компьютерной графике как средство усиления зритель

Способы описания цвета
Цвета в природе образуются различным образом. С одной стороны, световые источники (Солнце, лампочки, экраны компьютеров и телевизоров) излучают свет различных длин волн, воспринима

Цветовая палитра
Электронная цветовая палитра в компьютерной графике по предназначению подобна палитре художника, но включает в себя гораздо большее число цветов. Это своеобразная таблица данных, в

Системы управления цветом
При создании и обработке элементов компьютерной графики необходимо стремиться к тому, чтобы изображение выглядело практически одинаково на всех стадиях этого процесса, на любом устройстве отображен

Цветовая модель RGB
Цветовая модель RGB (Рис. 8.3.) является аддитивной, т.е. в ней любой цвет представляет собой сочетание в

Цветовая модель CMYK
Несветящиеся объекты поглощают часть спектра белого света, отражая цвета, определяющие окраску этих объектов. Цвета, которые образуются из белого света путем вычитания из него определенных участков

Цветовая модель CIE Lab
Модели RGB и CMYK являются аппаратно-зависимыми (в RGB значения базовых цветов определяются, как правило, качеством монит

Видеосистема персонального компьютера
Основным техническим средством для оперативного формирования и отображения как текстовой, так и графической информации в компьютере является видеосистема. Видеосистема ком

Графические редакторы и их возможности
Для созда­ния, просмотра и редактирования графических изображений на компьютере используют­ся специальные программы - графические редакторы, подразделяемые, как правило, на две кат

Растровые графические редакторы
Среди растровых графических редакторов есть простые, на­пример приложение Windows Paint, и мощные профессио­нальные графические системы, такие как пакет Ad

Векторные графические редакторы
К простейшим векторным графическим редакторам относятся, например, графические программные приложения в составе текстового процессора Microsoft Word и редактора эл

Редакторы электронных таблиц и табличные процессоры
9.1.1.Назначение, Основные функции, Классификация, Ценность любой информации в значительной мере определяется качеством её организации, и, более того, существенная

Форматы табличных файлов
Электронные таблицы, также как и другие электронные документы (текстовые, графические, комплексные), хранятся на внешних носителях в виде файлов. Как правило, при сохранении файлов электронных табл

Типовая структура пользовательского интерфейса
При работе с электронной таблицей на экране монитора выводятся рабочее поле таблицы и панель управления (рис.9.1). Панель управления обычно включа

Этапы формирования электронной таблицы
Любой табличный документ в процессе своего формирования проходит следующие этапы:) 1. Создание таблицы или ее загрузка. 2.

Ввод данных в ячейки
Ввод данных в ячейки таблицы производится стандартным технологическим приемом - путемнабора данных (чисел, текста, формул) с помощью клавиатуры. Ввод может осущест

Редактирование электронной таблицы
Редактирование электронной таблицы состоит в замене или корректировке неправильно введенных данных, изменении некоторых их атрибутов, изменении содержимого отдельных ячеек, их удал

Форматирование таблицы
Легкость восприятия информации в электронных таблицах резко улучшается при применении различных приемов форматирования, т.е. при оформлении таблицы в определенномпрофессиональном стиле

Сортировка, поиск и замена данных
Электронные таблицы позволяют осуществлять сортировку данных. Данные в электронных таблицах можно сортировать по возрастанию или по убыванию. Стро

Относительная и абсолютная адресация ячеек
При копировании или перемещении формулы в другое место таблицы необходимо организовать управление формированием адресов исходных данных. Очевидно, что в зависимости от внутренней логики выражений в

Средства автоматизации ввода данных
При вводе данных обычно используются следующие приемы автоматизации: · Повторный ввод (копирование)уже существующих данных путем использования буфера обме

Автоматическое форматирование электронных таблиц
Для обеспечения быстрого форматирования как содержимого ячеек, так и внешнего вида таблицы используются средства автоматического форматирования. К этим средствам можно отнести: · С

Автоматизация циклических вычислений и создания формул
Как уже отмечалось, современные табличные процессоры представляют собой мощные программные системы, ориентированные в первую очередь на эффективную математическую обработку разнообразной числовой и

Деловая графика в табличных процессорах
Деловая графика состоит в визуализации больших массивов числовых данных, т.е. в пред­ставлении их в наглядной графической форме, в виде диаграмм. Определение. Диаг

Агрегирование данных
Агрегирование данных состоит в формировании промежуточных итогов, а также создании сводных и консолидированных таблиц.

Использование электронных таблиц для решения задач
Качественная и глубокая проработка математических и алгоритмических возможностей современных табличных процессоров превратила их мощный математический инструмент подготовки и проведения прикладных

Статистическая обработка данных и решение задач прогнозирования
Статистическая обработка данных - это самый распространенный прием анализа числовой информации, с помощью которого вычисляются разнообразные статистические оценки рядов данных, которые в общем случ

Решение задач моделирования объектов, процессов, явлений
Кроме рассмотренных в пп. 9.8.1 и 9.8.2 задач, табличные процессоры позволяют решить и много других задач моделирования финансово-экономи-ческих, управленч

Базы данных
С самого начала развития вычислительной техники образовались два основных направления ее использования: § Первое - это применение вычислительной техники для выполнения численных ра

Требования, предъявляемые к БД и информации, хранящейся в ней
Для того, чтобы компьютерная БД приносила людям пользу, она должна отвечать следующему ряду требований: § Адекватность

Типы баз данных
За время использования компьютерных БД было предложено несколько типовых структур (по-другому называемых видами или типами БД), н

Основные объекты в базах данных
К основным объектам баз данныхотносятсятаблицы (отношения, relations), метаданные (metadata), индексы (indexes) и представления (view) )

Виды запросов и способы их организации
Определение. Любые манипуляции с данными в базах данных, такие как выбор, вставка, удаление, обновление данных, изменение или выбор метаданных, называются запросами к базе данных (query)

Понятие мультимедиа. Гипертекст и гипермедиа. Объекты мультимедиа
Термин мультимедиа (от англ. multimedia) можно перевести как «много сред» или «много носителей», т.е.: Определение.

Схемы хранения и воспроизведения мультимедиа-файлов
Для реализации мультимедиа компьютер должен быть оснащен следующими компонентами: § Аппаратными средствами, реализующими доступ к мультимедиа-данным, их создание и воспроизведение - иными

Средства создания мультимедиа документов (обзор)
В настоящее мультимедиа-технологии нашли широкое применение при создании разнообразных документов делового и развлекательного характера, презентационного назначения, когда возникает необходимость п

Компьютерные сети
Телекоммуникации в широком смысле этого понятия - это общение между субъектами, которыми могут быть люди, приборы, компьютеры, любые технические системы, находящимися на таком

Топология сети
Определение. Структура связей абонентов (узлов) вычислительной сети или, иными словами, метод их соединения в распределенную вычислительную среду, образующий некоторую физическую г

Архитектура сети
Определение. Системное описание вычислительной сети, определяющее функциональное назначение сетевых узлов при взаимодействии их друг с другом с целью обмена данными и организации у

Средства реализации сетей
В структуре сети любого масштаба легко выделить основные компоненты, без которых она не может быть реализована. Это, прежде всего: · Аппаратные средства, которые включают:

Основные пользовательские функции Internet
Развивая глобальные распределенные вычислительные среды (РВС) человечество создает на планете Земля новую универсальную интеллектуальную информационную среду. Одним из самых ярких

Структура Internet
Определение. Internet- это объединенная сеть, использующая технологию статистического мультиплексирования и устройства маршрутизации пакетов типа

Адресация в Internet
С точки зрения пользователя Internet - это совокупность крупных сетевых узлов (хостов или информационных серверов), объединенных между собой

Базовые информационные службы Интернет
Изначально сеть Internet была задумана и построена с целью автоматизациипроцессов обработки данных. Термин «обработка данных» озн

Off-line-сервисы Internet
§ Служба электронной почты e-mail, предоставляющая пользователю возможность обмена сообщения с другими абонентами по электронными коммуникациям. Можно пересылать текстовые сообщени

On-line-сервисs Internet
§ Служба удаленного файлового обмена FTP (File Transfer Protocol), предоставляющая FTP-клиенту механизм интерактивного доступа к файлохран

Internet-провайдеры
Интернет-провайдерами (от англ. to provide - предоставлять) называются сетевые компании, предоставляющие доступ к услугам глобальной сети Интернет

Web-браузеры
Как уже упоминалось ранее для просмотра WWW-ресурсовглобальной сетиИнтернет необходимо на клиентских станциях, подключенных к сети, установить клиентские программн

Основы технологии WWW
12.6.1.Архитектура распределенной Web-системы. Фундаментом Web-систем являются четыре компоненты:)

Пособие для поступающих в вуз
Под общей редакцией доцента, к.т.н. В.С. Белова Технический редактор В.С. Белов Компьютерная верстка: авторский коллектив

Почему фраталы так красивы?

Так сказочно, обворожительно, волнующе красивы. Математика вся пронизана красотой и гармонией, только эту красоту надо увидеть. Вот как пишет сам Мандельброт в своей книге "The Fractal Geometry of Nature"-"Почему геометрию часто называют холодной и сухой? Одна из причин лежит в ее неспособности описать форму облаков, гор или деревьев. Облака - это не сферы, горы - не углы, линия побережья - не окружность, кора не гладкая, а молния не прямая линия..."Фрактальная графика - это не просто множество самоповторяющихся изображений, это модель структуры и принципа любого сущего. Вся наша жизнь представлена фракталами. Взять, к примеру, ДНК, это всего лишь основа, одна итерация, а при повторении… появляется человек! И таких примеров много. Нельзя не отметить широкое применение фракталов в компьютерных играх, где рельефы местности зачастую являются фрактальными изображениями на основе трёхмерных моделей комплексных множеств и броуновского движения. Фрактальная графика необходима везде, и развитие "фрактальных технологий" - это одна из немаловажных задач на сегодняшний день. Фракталы вокруг нас повсюду, и в очертаниях гор, и в извилистой линии морского берега. Некоторые из фракталов непрерывно меняются, подобно движущимся облакам или мерцающему пламени, в то время как другие, подобно деревьям или нашим сосудистым системам, сохраняют структуру, приобретенную в процессе эволюции. Х.О.Пайген и П.Х Рихтер.

При фрактальном подходе хаос...перестает быть синонимом беспорядка и обретает тонкую структуру. Фрактальная наука еще очень молода, и ей предстоит большое будущее. Красота фракталов далеко не исчерпана и еще подарит нам немало шедевров - тех, которые услаждают глаз, и тех, которые доставляют истинное наслаждение разуму.


Понятие фрактал и фрактальная графика.

Геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Слово фрактал образовано от латинского fractus и в переводе означает состоящий из фрагментов. Оно было предложено Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта `The Fractal Geometry of Nature". В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф). Но только в наше время удалось объединить их работы в единую систему. Роль фракталов в машинной графике сегодня достаточно велика. Они приходят на помощь, например, когда требуется, с помощью нескольких коэффициентов, задать линии и поверхности очень сложной формы. С точки зрения машинной графики, фрактальная геометрия незаменима при генерации искусственных облаков, гор, поверхности моря. Фактически найден способ легкого представления сложных неевклидовых объектов, образы которых весьма похожи на природные. Одним из основных свойств фракталов является самоподобие. В самом простом случае небольшая часть фрактала содержит информацию о всем фрактале. Определение фрактала, данное Мандельбротом, звучит так: "Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому"








Фрактальная графика — новая технология, позволяющая получать уникальные красивые картины, но не только это. Читайте и смотрите видео про применение, примеры и изображения фрактальной графики.

Как был открыт фрактал

Математические формы, известные как фракталы, принадлежат гению выдающегося ученого Бенуа Мандельброта. Большую часть жизни он провёл в Соединенных Штатах, где преподавал математику в Йельском университете. В 1977 и 1982 годах Мандельброт опубликовал научные труды, посвященные изучению «фрактальной геометрии» или «геометрии природы».

В которых разбивал на первый взгляд случайные математические формы на составные элементы, оказавшиеся при ближайшем рассмотрении повторяющимися, - что и доказывает наличие некого образца для копирования. Открытие Мандельброта возымело весомые позитивные последствия в развитии физики, астрономии и биологии.

Как устроен фрактал

Фрактал (от латинского «fractus» — разбитый, дробленый, сломанный) представляет собой сложную геометрическую фигуру, которая составлена из нескольких бесконечной последовательности частей, каждая из которых подобна всей фигуре целиком, и повторяется при уменьшении масштаба.

Структура фрактала на всех шкалах является нетривиальной. Здесь нужно уточнить, что имеется в виду. Так вот, регулярные фигуры, такие как окружность, эллипс или график гладкой функции устроены таким образом, что при рассмотрении небольшого фрагмента регулярной фигуры в достаточно крупном масштабе он будет схожим с фрагментом прямой. Для фракталов же увеличение масштаба не приводит к упрощению структуры фигуры, и на всех шкалах мы видим однообразно сложную картину.

Изображение объектов фрактальной графики

Изображение объектов фрактальной графики в природе

Фракталы в природе

В природе фрактальными свойствами обладают многие объекты, например: кроны деревьев, цветная капуста, облака, кровеносная и альвеолярная системы человека и животных, кристаллы, снежинки, элементы которых выстраиваются в одну сложную структуру, побережья (фрактальная концепция позволила ученым измерить береговую линию Британских островов и другие, ранее неизмеримые, объекты).

Рассмотрим строение цветной капусты. Если разрезать один из цветков, очевидно, что в руках остаётся всё та же цветная капуста, только меньшего размера. Можно продолжать резать снова и снова, даже под микроскопом - однако все, что мы получим - это крошечные копии цветной капусты. В этом простейшем случае даже небольшая часть фрактала содержит информацию обо всей конечной структуре.

Ярким примером фрактала в природе является «Романеску», она же «романская брокколи» или «цветная коралловая капуста». Первые упоминания об этом экзотическом овоще относятся к Италии 16 века. Почки этой капусты растут по логарифмической спирали. Ей не перестают восхищаться 3D-художники, дизайнеры и кулинары.

Последние, причём, особенно ценят овощ за самый утончённый вкус (сладковато-ореховый, а не сернистый оттенок), какой только может быть у капусты, и за то, что он менее рассыпчатый, чем обычная цветная капуста. Кроме того, романская брокколи богата витамином С, антиоксидантами и каротиноидами.

Фракталы в цифровой технике

Фрактальная геометрия внесла неоценимый вклад в разработку новых технологий в области цифровой музыки, а так же сделала возможной сжатие цифровых изображений. Существующие фрактальные алгоритмы сжатия изображения основаны на принципе хранения сжимающего изображения вместо самой цифровой картинки.

Для сжимающего изображения основная картинка остаётся неподвижной точкой. Фирма «Microsoft» использовала один из вариантов данного алгоритма при издании своей энциклопедии, но по тем или иным причинам широкого распространения эта идея не получила.

Фрактальная графика достоинства и недостатки

Фракталы в сети

Принцип фрактального сжатия информации для компактного сохранения сведений об узлах сети «Netsukuku» использует система назначения IP-адресов. Каждый её узел хранит 4 килобайта информации о состоянии соседних узлов.

Любой новый узел подключается к общей сети Интернет, не требуя центрального регулирования раздачи IP-адресов. Можно сделать вывод, что принцип фрактального сжатия информации обеспечивает децентрализованную работу всей сети, а потому работа в ней протекает максимально устойчиво.

Фракталы в графике

Фракталы широко применяются в компьютерной графике – при построении изображений деревьев, кустов, поверхности морей, горных ландшафтов, и других природных объектов. Благодаря фрактальной графике был изобретён эффективный способ реализации сложных неевклидовых объектов, чьи образы похожи на природные: это алгоритмы синтеза коэффициентов фрактала, позволяющие воспроизвести копию любой картинки максимально близко к оригиналу.

Интересно, что кроме фрактальной «живописи» существуют так же фрактальная музыка и фрактальная анимация. В изобразительном искусстве существует направление, занимающееся получением изображения случайного фрактала – «фрактальная монотипия» или «стохатипия».

В математической основе фрактальной графики лежит фрактальная геометрия, где в основу методов построения «изображений-наследников» помещён принцип наследования от исходных «объектов-родителей». Сами понятия фрактальной геометрии и фрактальной графики появилось всего около 30 лет назад, но уже прочно вошли в обиход компьютерных дизайнеров и математиков.

Базовыми понятиями фрактальной компьютерной графики являются:

  • Фрактальный треугольник - фрактальная фигура - фрактальный объект (иерархия в порядке убывания)
  • Фрактальная прямая
  • Фрактальная композиция
  • «Объект-родитель» и «Объект наследник»

Создание фрактальной графики картинки

Также как в векторной и трёхмерной графике, создание фрактальных изображений математически вычисляемо. Главное отличие от первых двух видов графики в том, что фрактальное изображение строится по уравнению или системе уравнений, - ничего кроме формулы в памяти компьютера для выполнения всех вычислений хранить не нужно, - и такая компактность математического аппарата позволила использование этой идеи в компьютерной графике.

Просто изменяя коэффициенты уравнения, можно с лёгкостью получить совершенно иное фрактальное изображение - при помощи нескольких математических коэффициентов задаются поверхности и линии очень сложной формы, что позволяет реализовать такие приёмы композиции, как горизонтали и вертикали, симметрию и асимметрию, диагональные направления и многое другое.

Как построить фрактал?

Создатель фракталов выполняет роль художника, фотографа, скульптора, и ученого-изобретателя одновременно. Какие предстоят этапы работы сотворения рисунка «с нуля»?

  • задать форму рисунка математической формулой
  • исследовать сходимость процесса и варьировать его параметры
  • выбрать вид изображения
  • выбрать палитру цветов

Среди фрактальных графических редакторов и прочих графических программ можно выделить:

  • «Art Dabbler»
  • «Painter» (без компьютера ни один художник никогда не достигнет заложенных программистами возможностей лишь посредством с помощью карандаша и пера кисти)
  • «Adobe Photoshop» (но здесь изображение «с нуля» не создается, а, как правило, только обрабатывается)

Рассмотрим устройство произвольной фрактальной геометрической фигуры. В её центре находится простейший элемент - равносторонний треугольник, получивший одноимённое название: «фрактальный». На среднем отрезке сторон построим равносторонние треугольники со стороной, равной одной трети от стороны исходного фрактального треугольника.

По тому же принципу строятся ещё более мелкие треугольники-наследники второго поколения – и так до бесконечности. Объект, который в результате получился, называется «фрактальной фигурой», из последовательностей которой получаем «фрактальную композицию».

Введение

Слово фрактал образовано от латинского "fractus" и в переводе означает состоящий из фрагментов. Оно было предложено Бенуа Мандельбротом в 1975 году. Определение фрактала, данное Мандельбротом, звучит так: "Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому". Одним из основных свойств фракталов является самоподобие. В самом простом случае небольшая часть фрактала содержит информацию о всем фрактале. Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов.

Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких, как деревья, кусты, горные ландшафты, поверхности морей и т. д. Роль фракталов в машинной графике сегодня достаточно велика. Они приходят на помощь, например, когда требуется, получить линии и поверхности очень сложной формы. Фракталы используются для описания кривизны поверхностей. С точки зрения машинной графики, фрактальная геометрия незаменима при генерации искусственных облаков, объемных рельефных гор, поверхности моря. Фактически найден способ легкого представления сложных неевклидовых объектов, образы которых весьма похожи на природные. Фрактальная компьютерная графика широко используется при создании мультфильмов и фантастических художественных фильмов. Используются антенны, имеющие фрактальные формы, что сильно уменьшает их размеры и вес.

1. Теоретическая часть

1.1Применение фракталов

·Компьютерные системы.

Наиболее полезным использованием фракталов в компьютерной науке является фрактальное сжатие данных. Достоинство фрактального сжатия изображений - очень маленький размер упакованного файла и малое время восстановления картинки. Фрактально упакованные картинки можно масштабировать без появления пикселизации. Но процесс сжатия занимает продолжительное время и иногда длится часами. Алгоритм фрактальной упаковки с потерей качества позволяет задать степень сжатия, аналогично формату jpeg.

В основе алгоритма лежит поиск больших кусков изображения подобных некоторым маленьким кусочкам. И в выходной файл записывается только какой кусочек какому подобен. При сжатии обычно используют квадратную сетку (кусочки - квадраты), что приводит к небольшой угловатости при восстановлении картинки, шестиугольная сетка лишена такого недостатка.

·Механика жидкостей.

Изучение турбулентности в потоках очень хорошо подстраивается под фракталы. Турбулентные потоки хаотичны и поэтому их сложно точно смоделировать.

При помощи фракталов также можно смоделировать языки пламени.

Пористые материалы хорошо представляются в фрактальной форме в связи с тем, что они имеют очень сложную геометрию. Это используется в нефтяной науке.

·Телекоммуникации.

В телекоммуникациях фракталы используются для создания фрактальных антенн. Фрактальные антенны - относительно новый класс электрически малых антенн (ЭМА), принципиально отличающийся своей геометрией от известных решений. По сути, традиционная эволюция антенн базировалась на евклидовой геометрии, оперирующей объектами целочисленной размерности (линия, круг, эллипс, параболоид и т. п.). Фрактальная антенны с удивительно компактным дизайном обеспечивает превосходную широкополосную производительность в маленьком форм-факторе. Достаточно компактны для установки или встраивания в различных местах, фрактальные антенны используются для морских, воздушных транспортных средств, или персональных устройств. На изображении выше пример фрактальной антенны.

Также в сфере сетевых технологий было проведено множество исследований показывающих самоподобие траффика передаваемого по разного рода сетям. Особенно это касается речевых, аудио и видео сервисов. Поэтому сейчас ведутся разработки и исследования возможности фрактального сжатия траффика передаваемого по сетям, с целью более эффективной передачи информации.

1.2Классификация фракталов

Вообще фракталом называется предмет который обладает одним из указанных свойств:

vОбладает нетривиальной структурой на всех масштабах. В этом и есть отличие от регулярных фигур, таких как окружность или эллипс. Если мы рассмотрим небольшой фрагмент регулярной фигуры в крупном масштабе, то он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведет к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину.

vЯвляется самоподобным или приближенно самоподобным.

vОбладает дробной метрической размерностью.

В основном фракталы классифицируют по трём видам:

.Алгебраические фракталы

.Геометрические фракталы

.Стохастические фракталы

Алгебраические фракталы

Алгебраические фракталы - это самая крупная группа фракталов, получившая название за использование алгебраических формул. Методов

получения алгебраических фракталов несколько. Один из методов представляет собой многократный (итерационный) расчет функции Zn+1=f(Zn), где Z - комплексное число, а f некая функция. Расчет данной функции продолжается до выполнения определенного условия. И когда это условие выполнится - на экран выводится точка. При этом функция для разных точек комплексной плоскости может иметь разное поведение: с течением времени она может стремиться к бесконечности; стремиться к 0; принимать несколько фиксированных значений и не выходить за их пределы. Поведение хаотично, без каких-либо тенденций. Таким образом было получено множество Мандельброта - фрактал, определённый, как множество точек С на комплексной плоскости. Бенуа Мандельброт предложил модель фрактала, которая стала классической и часто используется для демонстрации, как типичного примера самого фрактала, так и для демонстрации красоты фракталов, которая также привлекает исследователей, художников, просто интересующихся людей.

Рис.1. Пример алгебраического фрактала.

Геометрические фракталы

Фракталы этого класса самые наглядные, потому что в них сразу видна самоподобность. В двухмерном случае такие фракталы можно получить, задав некоторую ломаную, называемую генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор. В результате бесконечного повторения этой процедуры (а, точнее, при переходе к пределу) получается фрактальная кривая. При видимой сложности полученной кривой, её общий вид задается только формой генератора. Примерами таких кривых служат: кривая Коха (снежинка Коха), кривая Леви, кривая Минковского, кривая Пеано.

Рис.2. Пример геометрического фрактала.

Стохастические фракталы

Типичный представитель данного класса фракталов "Плазма". Для ее построения возьмем прямоугольник и для каждого его угла определим цвет. Далее находим центральную точку прямоугольника и раскрашиваем ее в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число - тем более "рваным" будет рисунок. Если мы теперь скажем, что цвет точки это высота над уровнем моря - получим вместо плазмы - горный массив. Именно на этом принципе моделируются горы в большинстве программ.

1.3Виды фракталов

Рассмотрим несколько распространённых видов фракталов.

Решётка Серпинского.

Это один из фракталов, с которыми экспериментировал Мандельброт, когда разрабатывал концепции фрактальных размерностей и итераций. Треугольники, сформированные соединением средних точек большего треугольника вырезаны из главного треугольника, образовывая треугольник, с большим количеством дырочек. В этом случае инициатор - большой треугольник а шаблон - операция вырезания треугольников, подобных большему. Так же можно получить и трехмерную версию треугольника, используя обыкновенный тетраэдр и вырезая маленькие тетраэдры. Размерность такого фрактала ln3/ln2 = 1.584962501.

Рис.3. Решетка Серпинского.

Треугольник Серпинского.

Не перепутайте этот фрактал с решеткой Серпинского. Это два абсолютно разных объекта. В этом фрактале, инициатор и генератор одинаковы. При каждой итерации, добавляется уменьшенная копия инициатора к каждому углу генератора и так далее. Если при создании этого фрактала произвести бесконечное число итераций, он бы занял всю плоскость, не оставив ни одной дырочки. Поэтому его фрактальная размерность ln9/ln3 = 2.0.

Рис.4. Треугольник Серпинского.

Кривая Коха.

Кривая Коха один из самых типичных детерминированных фракталов. Она была изобретена в 1904 году шведским математиком по имени Хельге фон Кох, который, изучая работы Георга Контора и Карла Вейерштрассе, натолкнулся на описания некоторых странных кривых с необычным поведением. Инициатор - прямая линия. Генератор - равносторонний треугольник, стороны которого равны трети длины большего отрезка. Эти треугольники добавляются к середине каждого сегмента снова и снова. В своем исследовании, Мандельброт много экспериментировал с кривыми Коха, и получил фигуры такие как Острова Коха, Кресты Коха, Снежинки Коха и даже трехмерные представления кривой Коха, используя тетраэдр и прибавляя меньшие по размерам тетраэдры к каждой его грани. Кривая Коха имеет размерность ln4/ln3 = 1.261859507.

Рис.5. Кривая Коха.

Фрактал Мандельброта.

Это НЕ множество Мандельброта, которое можно достаточно часто видеть. Множество Мандельброта основано на нелинейных уравнениях и является комплексным фракталом. Это тоже вариант кривой Коха несмотря на то, что этот объект не похож на нее. Инициатор и генератор так же отличны от использованных для создания фракталов, основанных на принципе кривой Коха, но идея остается той же. Вместо того, чтобы присоединять равносторонние треугольники к отрезку кривой, квадраты присоединяются к квадрату. Благодаря тому, что этот фрактал занимает точно половину отведенного пространства при каждой итерации, он имеет простую фрактальную размерность 3/2 = 1.5

Рис.6. Фрактал Мандельброта.

Кривая Дракона.

Изобретенная итальянским математиком Джузеппе Пеано, Кривая Дракона или Взмах Дракона, как он назвал его, очень похож на колбасу Минковского. Использован более простой инициатор, а генератор тот же самый. Мандельброт назвал этот фрактал Река Двойного Дракона. Его фрактальная размерность приблизительно равна 1.5236.

Рис.7. Дракон Джузеппе Пеано.

Множество Мандельброта.

Множества Мандельброта и Жюлиа, вероятно, два наиболее распространенных среди сложных фракталов. Их можно найти во многих научных журналах, обложках книг, открытках, и в компьютерных хранителях экрана. Множество Мандельброта, которое было построено Бенуа Мандельбротом, наверное первая ассоциация, возникающая у людей, когда они слышат слово фрактал. Этот фрактал, напоминающий чесальную машину с прикрепленными к ней пылающими древовидными и круглыми областями, генерируется простой формулой Zn+1=Zna+C, где Z и C - комплексные числа и а - положительное число.

Множество Мандельброта, которое чаще всего можно увидеть - это множество Мандельброта 2й степени, то есть а=2. Тот факт, что множество Мандельброта не только Zn+1=ZnІ+C, а фрактал, показатель в формуле которого может быть любым положительным числом ввел в заблуждение многих. На этой странице вы видите пример множества Мандельброта для различных значений показателя а.

Также популярен процесс Z=Z*tg (Z+C). Благодаря включению функции тангенса, получается множество Мандельброта, окруженное областью, напоминающей яблоко. При использовании функции косинуса, получаются эффекты воздушных пузырьков. Короче говоря, существует бесконечное количество способов настройки множества Мандельброта для получения различных красивых картинок.

Рис.8. Множество Мандельброта.

Модель Джулии

Модель фрактала Джулии имеет то же уравнение, что и модель Мандельброта: Z=Z 2 +c, только здесь переменным параметром является не c , a z.

Соответственно, меняется вся структура фрактала, так как теперь на начальное положение не накладывается никаких ограничений. Между моделями Мандельброта и Джулии существует такое различие: если модель Мандельброта является статической (так как z начальное всегда равно нулю), то модель Джулии является динамической моделью фрактала.

Рис.9. Модель Джулии.

2. Постановка задачи

Необходимо спроектировать и разработать программный продукт, при помощи которого возможно наглядно посмотреть изображения фрактальной графики. Программа должна позволять раскрыть сущность фрактала - многократное самоповторение (всего изображения или определённой его части). Интерфейс должен быть максимально понятным. Скорость работы должна быть такой, чтобы сбалансировать производительность и качество, то есть при данной скорости прорисовывается достаточно наглядное изображение. Необходима так же возможность сохранения фрактального изображения. Программа должна быть интуитивно понятной и "не отталкивать при первом взгляде". Возможностями программы должны быть доступны прорисовки алгебраического и геометрического фракталов.


Рис.10. Схема работы программы.

Работать мы будем в среде программирования PascalABC.NET, поговорим о ней подробнее. PascalABC.NET - это язык программирования Паскаль нового поколения, который включает в себя классический Паскаль, большинство возможностей языка Delphi , а также ряд собственных расширений. Он реализован на платформе Microsoft.NET и содержит все современные языковые средства такие как: классы , перегрузку операций , интерфейсы , обработку исключений , обобщенные классы и подпрограммы , сборку мусора , лямбда-выражения, средства параллельного программирования ..NET является мультипарадигменным языком: на нем можно программировать в структурном , объектно-ориентированном и функциональном стилях. Также это простая и мощная интегрированная среда разработки, поддерживающая технологию IntelliSense , содержащая средства автоформатирования, встроенный отладчик и встроенный дизайнер форм. Кроме того, консольный компилятор PascalABC.NET функционирует на Linux и MacOS под Mono .

Среда PascalABC.NET проектируется как простая, но мощная оболочка, обеспечивающая подсветку синтаксиса, подсказку по коду (подсказка по точке, подсказка параметров подпрограмм, всплывающая подсказка по именам), форматирование текста программы по запросу, переход к определению и реализации подпрограммы, элементы рефакторинга. Она разрабатывается в большей степени с целью обучения программированию и содержит в своем составе ряд дополнительных модулей, предназначенных для обучения.

Особенности:

·доступ к существующим.NET библиотекам и возможность создания новых. В частности, существуют библиотеки для основных алгоритмов и структур данных.

·среда разработки, ориентированная на обучение: подсказки по коду, отладчик, автоформатирование кода и подсветка синтаксиса, простая навигация по коду и т.д.

·поддержка современных возможностей языков программирования: модули, классы, пространства имен, обработка исключений, сборка мусора и т.д.

·средства параллельного программирования (директивы OpenMP).

·обучающий инструментарий, сохранившийся с Pascal ABC: встроенный задачник, механизм проверяемых заданий, "исполнители" Робот и Чертежник и т.д.

По функциональному назначению выделяется три области экрана:

ØСтрока меню

ØРабочая область

ØСтрока состояния

В рабочей области есть возможность открывать различные окна программы: окна редактируемого текста, окна помощи, отладки и настройки. Имя файла написано в заголовке окна. Строка состояния показывает некоторые доступные и важные в настоящее время операции и комбинации клавиш соответствующие им.

Рис.11. Главное окно в PascalABC.NET

Основные команды и горячие клавиши.

Основные команды языка программирования Pascal и соответствующие им горячие клавиши:

·Ctrl+F9 - запуск программы

·Alt+F5 - просмотр пользовательского экрана

·F2 - сохранение программы

·F3 - открытие сохраненной программы

·Alt+F3 - закрытие активного окна

·Alt+X - выход из Турбо Паскаль

·F1 - контекстная помощь

·Ctrl+F1 - справка об операторе, на котором установлен курсор

·Alt+Backspace - отмена последнего изменения

·Ctrl+Y - удаление строки

·Shift+стрелки - выделение блока текста

·Ctrl+Insert - копирование выделенного блока в буфер

·Shift+Insert - вставка из буфера

Операции отношения.

К операциям отношения в Pascal относят:

·> - больше

·< - меньше

·= - равно

·<> - не равно

·>= - больше или равно

·<= - меньше или равно

В операциях отношения могут быть не только числа, но также и символы, строки, множества и указатели.

Приоритет операций.

Существует следующий приоритет операций:

·унарная операция not, унарный минус -, взятие адреса @

·операции типа умножения: * / div mod and

·операции типа сложения: + - or xor

·операции отношения: = <> < > <= >= in

Логические операции.

·NOT - логическое отрицание ("НЕ")

·AND - логическое умножение ("И")

·OR - логическое сложение ("ИЛИ")

·XOR - логическое ("Исключающее ИЛИ")

Структура программы

Программа на языке Pascal состоит из заголовка, разделов описаний и раздела операторов. Заголовок программы должен содержат имя программы (program tab;)

Описания могут включать в себя:

фрактал стохастический множество кривая

Рис.12.Структура программы.

Раздел описания модулей. Состоит из служебного слова USES и содержит имена подключаемых модулей (библиотек). Раздел описания модулей должен быть первым среди разделов описаний. Имена модулей разделяются друг от друга запятыми (uses CRT,tab;).

Все метки, которые используются в программе, должны быть описаны в разделе описания меток (label 5, 365, 95, Quit;).

Описание констант позволяет использовать имена как синонимы констант, их необходимо определить в разделе описания констант:K=524; MAX= 17850;

В разделе описания переменных необходимо внести все переменные, которые используются в программе, и еще нужно определить их тип:

var S,R,M: Integer;,Y: Char;,D6: Boolean;

Раздел операторов - составной оператор, содержащий между служебными словами begin.......end последовательность операторов. Операторы отделяются символом " ; ". А текст заканчивается точкой(.) .

Кроме описаний и операторов PascalABC.NET может содержать комментарии, представляющие собой произвольную последовательность символов, которые располагаются между скобкой комментариев { ... }:

3. Практическая часть

В этой части мы приступим к созданию фракталов, в нашем случае это треугольник Серпинского. Этот фрактал описал в 1915 году польский математик Вацлав Серпинский. Чтобы его получить, нужно взять (равносторонний) треугольник с внутренностью, провести в нём средние линии и выкинуть центральный из четырех образовавшихся маленьких треугольников. Дальше эти же действия нужно повторить с каждым из оставшихся трех треугольников, и т. д. На рисунке показаны первые три шага.

Рис.13. Пошаговое создание треугольника Серпинского.

Выкидывание центральных треугольников - не единственный способ получить в итоге треугольник Серпинского. Можно двигаться "в обратном направлении": взять изначально "пустой" треугольник, затем достроить в нём треугольник, образованный средними линиями, затем в каждом из трех угловых треугольников сделать то же самое, и т. д. Поначалу фигуры будут сильно отличаться, но с ростом номера итерации они будут всё больше походить друг на друга, а в пределе совпадут.

Рис.14. Пошаговое создание треугольника Серпинского.

Вот наш конечный код написание нашей программы треугольника Серпинского в среде программирования PascalABC.NET.

program Serpinskiy;CRT, GraphABC;, gm: Integer;= 9;tr(x1, y1, x2, y2, x3, y3: Real);(Round(x1), Round(y1), Round(x2), Round(y2));(Round(x2), Round(y2), Round(x3), Round(y3));(Round(x3), Round(y3), Round(x1), Round(y1));;draw(x1, y1, x2, y2, x3, y3: Real; n: Integer);n, y1n, x2n, y2n, x3n, y3n: Real;n > 0 thenn:= (x1 + x2) / 2;n:= (y1 + y2) / 2;n:= (x2 + x3) / 2;n:= (y2 + y3) / 2;n:= (x3 + x1) / 2;n:= (y3 + y1) / 2;(x1n, y1n, x2n, y2n, x3n, y3n);(x1, y1, x1n, y1n, x3n, y3n, n - 1);(x2, y2, x1n, y1n, x2n, y2n, n - 1);(x3, y3, x2n, y2n, x3n, y3n, n - 1);;;(320,10,600,470,40,470);(320,10,600,470,40,470,iter);{}.

Рис.15. Готовая программа в PascalABC.NET.

После того как написали код, следует запустить нашу программу. Для этого заходим в раздел "Программа" и выбираем пункт "Выполнить без связи с оболочкой".

Рис.16. Запуск программы.

После запуска откроется дополнительное окно, в котором мы можем увидеть наш готовый рисунок.

Рис.17. Готовый Треугольник Серпинского.

Заключение

Наука о фракталах очень молода, потому что они стали появляться с развитием компьютерных технологий. Поэтому многое еще не изучено и многое еще предстоит открыть. Основная причина применения фракталов в различных науках заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Мы выяснили, что фракталы можно применять не только в точных науках, но и практически во всем, что нас окружает. В этом мы можем убедиться на конкретном примере, представленном в практической части работы, а именно на примере создания фрактала треугольника Серпинского. Кроме большой функциональности, возможности применения фракталов в самых различных сферах жизни, это очень яркие, изумительные по своей красоте изображения, которые доставляют огромное эстетическое удовольствие, позволяют насладиться ими. Создавать свои собственные фракталы может каждый, используя доступные программы. От самого процесса создания совершенно для нас нового и одновременно невероятно красивого, порой фантастического, получаешь массу удовольствия. Фракталы очень разнообразны, как и их применение. Изучая фрактальные модели для практического применения, каждый сможет выбрать подходящее для себя направление.

Список литературы

1.Божокин С.В., Паршин Д.А. Фракталы и мультифракталы. РХД 2008 г.

Дж.Милнор Голоморфная динамика. РХД 2010 г.

Витолин Д. Применение фракталов в машинной графике. // Computerworld-Россия.-2007.

Пайтген Х.-О., Рихтер П. Х. Красота фракталов. - М.: "Мир", 2009.

Кроновер Р. М. Фракталы и хаос в динамических системах. Основы теории 2011.

Мандельброт Б. Самоаффинные фрактальные множества, "Фракталы в физике". М.: Мир 2010.

Мандельброт Б. Фрактальная геометрия природы. 2009.

Морозов А.Д. Введение в теорию фракталов. Н.Новгород: Изд-во Нижегород. ун-та 2009.