С миру по нитке

Как выглядит сенсорный экран. Сенсорный экран

Сначала тачскрины (сенсорные экраны) встречались достаточно редко. Их возможно было найти, только лишь в некоторых КПК, PDA (карманных компьютерах). Как известно, устройства такого плана так и не обрели широкого распространения, так как им не хватило самого важного, то есть, функциональности. История смартфонов напрямую связана с тачскринами. Именно поэтому в нынешнее время человека с «умным телефоном» сенсорным экраном сейчас не удивишь. Тачскрин получил широкое применение не только в модных дорогостоящих девайсах, но, даже, в относительно недорогих моделях современных телефонов. В чём же заключаются принципы работы 3-х типов сенсорных экранов, которые возможно встретить в современных устройствах.

Типы тачскринов

Сенсорные экраны уже не являются слишком дорогими. Кроме этого, тачскрины (touchscreen) сегодня намного «отзывчивее» - касания пользователя распознают просто превосходно. Именно эта характеристика проложила им дорогу к большому числу пользователей во всем мире. В нынешнее время существуют три основные конструкции тачскринов:

  1. Ёмкостные.
  2. Волновые.
  3. Резистивные или попросту «упругие».

Ёмкостный тачскрин: принцип работы

В тачскринах конструкции такого рода стеклянную основу покрывают слоем, который выполняет роль вместилища-накопителя заряда. Пользователь своим касанием высвобождает в определённой точке часть электрического заряда. Данное уменьшение определяется микросхемами, которые расположены в каждом углу экрана. Компьютером вычисляется разница электрических потенциалов, существующих между разными частями экрана, при этом, информация о касании в подробностях передаётся немедленно в программу-драйвер тачскрина.

Довольно важное преимущество ёмкостных тачскринов - это способность данного типа экранов сохранять практически 90 % от изначальной яркости дисплея. Из-за этого изображения на ёмкостном экране смотрятся более чёткими, чем на тачскринах, имеющих резистивную конструкцию.

Видео про ёмкостный сенсорный экран:

Будущее: волновые сенсорные дисплеи


На концах осей координатной сетки экрана из стекла располагается два преобразователя. Один из них является передающим, второй - принимающим. На стеклянной основе имеются и рефлекторы, «отражающие» электрический сигнал, который передаётся от одного к другому преобразователю.

Преобразователь-приёмник стопроцентно точно «знает» было ли нажатие, а также в какой конкретно точке оно произошло, так как пользователь своим касанием прерывает акустическую волну. При этом, стекло волнового дисплея не имеет металлического покрытия - это предоставляет возможность сохранить в полном объёме 100 % изначального света. В связи с этим, волновой экран представляет собой наилучший вариант для тех пользователей, которые работают в графике с мелкими деталями, потому, что резистивные и ёмкостные тачскрины не являются идеальными в вопросе чёткости изображений. Их покрытие задерживает свет, что в результате существенно искажает картинку.

Видео про принцип работы сенсорных экранов на ПАВ:

Прошлое: о резистивном тачскрине


Резистивная система - это обычное стекло, которое покрыто слоем проводника электричества, а также упругой металлической «плёнкой», также обладающей токопроводящими качествами. Между этими 2-мя слоями с помощью специальных распорок есть пустое пространство. Поверхность экрана покрыта специальным материалом, который обеспечивает ему защиту от механических повреждений, например, царапин.

Электрический заряд в процессе работы пользователя с тачскрином, проходит через два эти слоя. Каким же образом это происходит? Пользователь в определённой точке касается экрана и упругий верхний слой соприкасается с проводниковым слоем - только в этой точке. Потом компьютером определяются координаты той точки, которой пользователь коснулся.

Когда координаты становятся известны устройству, то специальный драйвер переводит прикосновения в команды, известные операционной системе. В данном случае можно провести аналоги с драйвером самой обычной компьютерной мышки, ведь он занимается точно тем же: объясняет операционной системе то, что конкретно хотел сказать ей пользователь посредством перемещения манипулятора или же нажатия кнопки. С экранами данного типа используют, как правило, специальные стилусы.


Резистивные экраны возможно обнаружить в относительно немолодых устройствах. Как раз таким сенсорным дисплеем оборудован IBM Simon - самый древний смартфон из тех, что были сознаны нашей цивилизацией.

Видео про принцип работы резистивного сенсорного экрана:

Особенности различных типов тачскринов

Наиболее дешёвыми сенсорными экранами, но, при этом, наименее чётко транслирующими изображение являются резистивные тачскрины. Кроме этого, они являются и самыми уязвимыми, ведь абсолютно любым острым предметом возможно серьёзно повредить достаточно нежную резистивную «плёночку».

Следующий тип, т.е. волновые тачскрины, представляют собой самые дорогостоящими среди себе подобных. При этом, резистивная конструкция, вероятнее всего, относится, всё-таки, к прошлому, ёмкостная - к настоящему, а волновая - к будущему. Понятное дело, что грядущее абсолютно никому стопроцентно не известно и, соответственно, в нынешнее время можно только лишь предполагать, какая именно технология имеет большие перспективы для использования её в будущем.

Для резистивной системы тачскринов не имеет никакого особого значения, коснулся резиновым наконечником стилуса или же просто пальцем пользователь экрана устройства. Достаточно того, что между двумя слоями произошло соприкосновение. При этом, ёмкостной экран распознает только лишь касания какими-то токопроводящими предметами. Зачастую пользователи современных устройств работают с ними с помощью собственных пальцев. Экраны волновой конструкции в этом отношении ближе к резистивным. Отдать команду возможно практически любым предметом - при этом нужно только избегать использования тяжёлых или же слишком маленьких объектов, например, стержень шариковой ручки для этого не подойдёт.

Статья:

Устройство дисплея мобильного телефона (смартфона) и планшета. Устройство жидкокристаллического экрана. Типы дисплеев, их отличия.

Предисловие

В этой статье мы разберем устройство дисплеев современных мобильных телефонов, смартфонов и планшетов. Экраны крупных устройств (мониторов, телевизоров и т.п.), за исключением небольших нюансов, устроены аналогично.

Разборку будем проводить не только теоретически, но и практически, со вскрытием дисплея "жертвенного" телефона.

Рассматривать, как устроен современный дисплей, мы будем на примере наиболее сложного их них - жидкокристаллического (LCD - liquid crystal display ). Иногда их называют TFT LCD , где сокращение TFT расшифровывается "thin-film transistor" - тонкопленочный транзистор; поскольку управление жидкими кристаллами осуществляется благодаря таким транзисторам, нанесенным на подложку вместе с жидкими кристаллами.

В качестве "жертвенного" телефона, дисплей которого будет вскрыт, выступит дешевенький Nokia 105.

Основные составные части дисплея

Жидкокристаллические дисплеи (TFT LCD , и их модификации - TN, IPS, IGZO и т.д.) состоят укрупненно из трех составных частей: сенсорной поверхности, устройства формирования изображения (матрица) и источника света (лампы подсветки).Между сенсорной поверхностью и матрицей расположен еще один слой, пассивный. Он представляет собой прозрачный оптический клей или просто воздушный промежуток. Существование этого слоя связано с тем, что в ЖК-дисплеях экран и сенсорная поверхность представляют собой совершенно разные устройства, совмещенные чисто механически.

Каждая из "активных" составных частей имеет достаточно сложную структуру.

Начнем с сенсорной поверхности (тачскрин, touchscreen). Она располагается самым верхним слоем в дисплее (если она есть; а в кнопочных телефонах, например, ее нет).
Её наиболее распространенный сейчас тип - ёмкостная. Принцип действия такого тачскрина основан на изменении электрической емкости между вертикальными и горизонтальными проводниками при прикосновении пальца пользователя.
Соответственно, чтобы эти проводники не мешали рассматривать изображение, они делаются прозрачными из специальных материалов (обычно для этого используется оксид индия-олова).

Существуют также и сенсорные поверхности, реагирующие на силу нажатия (т.н. резистивные), но они уже "сходят с арены".
В последнее время появились и комбинированные сенсорные поверхности, реагирующие одновременно и на емкость пальца, и на силу нажатия (3D-touch -дисплеи). Их основу составляет емкостной сенсор, дополненный датчиком силы нажатия на экран.

Тачскрин может быть отделен от экрана воздушным промежутком, а может быть и склеен с ним (так называемое "решение с одним стеклом", OGS - one glass solution).
Такой вариант (OGS) имеет значительное преимущество по качеству, поскольку уменьшает уровень отражения в дисплее от внешних источников света. Это достигается за счет уменьшения количества отражающих поверхностей.
В "обычном" дисплее (с воздушным промежутком) таких поверхностей - три. Это - границы переходов между средами с разным коэффициентом преломления света: "воздух-стекло", затем - "стекло-воздух", и, наконец, снова "воздух-стекло". Наиболее сильные отражения - от первой и последней границ.

В варианте же с OGS отражающая поверхность - только одна (внешняя), "воздух-стекло".

Хотя собственно для пользователя дисплей с OGS очень удобен и имеет хорошие характеристики; есть у него и недостаток, который "всплывает", если дисплей разбить. Если в "обычном" дисплее (без OGS) при ударе разбивается только сам тачскрин (чувствительная поверхность), то при ударе дисплея с OGS может разбиться и весь дисплей целиком. Но происходит это не всегда, поэтому утверждения некоторых порталов о том, что дисплеи с OGS абсолютно не ремонтируемые - не верно. Вероятность того, что разбилась только внешняя поверхность - довольно велика, выше 50%. Но ремонт с отделением слоев и приклейкой нового тачскрина возможен только в сервис-центре; отремонтировать своими руками крайне проблематично.

Экран

Теперь переходим к следующей части - собственно экрану.

Он состоит из матрицы с сопутствующими слоями и лампы подсветки (тоже многослойной!).

Задача матрицы и относящихся к ней слоев - изменить количество проходящего через каждый пиксель света от лампы подсветки, формируя тем самым изображение; то есть в данном случае регулируется прозрачность пикселей.

Немного детальнее об этом процессе.

Регулировка "прозрачности" осуществляется за счет изменения направления поляризации света при прохождении через жидкие кристаллы в пикселе под воздействием на них электрического поля (или наоборот, при отсутствии воздействия). При этом само по себе изменение поляризации еще не меняет яркости проходящего света.

Изменение яркости происходит при прохождении поляризованного света через следующий слой - поляризационную пленку с "фиксированным" направлением поляризации.

Схематично структура и работа матрицы в двух состояниях ("есть свет" и "нет света") изображена на следующем рисунке:


(использовано изображение из нидерландского раздела Википедии с переводом на русский язык)

Поворот поляризации света происходит в слое жидких кристаллов в зависимости от приложенного напряжения.
Чем больше совпадут направления поляризации в пикселе (на выходе из жидких кристаллов) и в пленке с фиксированной поляризацией, тем больше в итоге проходит света через всю систему.

Если направления поляризации получатся перпендикулярными, то свет теоретически вообще проходить не должен - должен быть черный экран.

На практике такое "идеальное" расположение векторов поляризации создать невозможно; причем как из-за "неидеальности" жидких кристаллов, так и не идеальной геометрии сборки дисплея. Поэтому и абсолютно-черного изображения на TFT экране не может быть. На лучших LCD экранах контрастность белое/черное может быть свыше 1000; на средних 500...1000, на остальных - ниже 500.

Только что была описана работа матрицы, изготовленной по технологии LCD TN+film. Жидкокристаллические матрицы по другим технологиям имеют схожие принципы работы, но другую техническую реализацию. Наилучшие результаты по цветопередаче получаются по технологиям IPS, IGZO и *VA (MVA, PVA и т.п.).

Подсветка

Теперь переходим к самому "дну" дисплея - лампе подсветки. Хотя современная подсветка собственно ламп и не содержит.

Несмотря на простое название, лампа подсветки имеет сложную многослойную структуру.

Связано это с тем, что лампа подсветки должна быть плоским источником света с равномерной яркостью всей поверхности, а таких источников света в природе крайне мало. Да и те, что есть, не очень подходят для этих целей из-за низкого КПД, "плохого" спектра излучения, или же требуют "неподходящего" типа и величины напряжения свечения (например, электролюминесцентные поверхности, см. Википедию ).

В связи с этим сейчас наиболее распространены не чисто "плоские" источники света, а "точечная" светодиодная подсветка с применением дополнительных рассеивающих и отражающих слоев.

Рассмотрим такой тип подсветки, проведя "вскрытие" дисплея телефона Nokia 105.

Разобрав систему подсветки дисплея до её среднего слоя, мы увидим в левом нижнем углу единственный светодиод белого свечения, который направляет свое излучение внутрь почти прозрачной пластины через плоскую грань на внутреннем "срезе" угла:

Пояснения к снимку. В центре кадра - разделенный по слоям дисплей мобильного телефона. В середине на переднем плане снизу - покрытая трещинами матрица (повреждена при разборке). На переднем плане вверху - срединная часть системы подсветки (остальные слои временно удалены для обеспечения видимости излучающего белого светодиода и полупрозрачной "световодной" пластины).
Сзади дисплея видна материнская плата телефона (зеленого цвета) и клавиатура (снизу с круглыми отверстиями для передачи нажатия от кнопок).

Эта полупрозрачная пластина является одновременно и световодом (за счет внутренних переотражений), и первым рассеивающим элементом (за счет "пупырышков", создающих препятствия для прохождения света). В увеличенном виде они выглядят так:


В нижней части изображения левее середины виден яркий излучающий белый светодиод подсветки.

Форма белого светодиода подсветки лучше различима на снимке с пониженной яркостью его свечения:

Снизу и сверху этой пластины подкладывают обыкновенные белые матовые пластиковые листы, равномерно распределяющие световой поток по площади:

Его условно можно назвать "лист с полупрозрачным зеркалом и двойным лучепреломлением". Помните, на уроках физики нам рассказывали про исландский шпат, при прохождении через который свет раздваивался? Вот это похоже на него, только еще и немного с зеркальными свойствами.

Вот так выглядят обычные наручные часы, если часть их прикрыть этим листом:

Вероятное назначение этого листа - предварительная фильтрация света по поляризации (сохранить нужную, отбросить ненужную). Но не исключено, что и в плане направления светового потока в сторону матрицы эта пленка тоже имеет какую-то роль.

Вот так устроена "простенькая" лампа подсветки в жидкокристаллических дисплеях и мониторах.

Что касается "больших" экранов, то их устройство - аналогично, но светодиодов в устройстве подсветки там больше.

В более старых жидкокристаллических мониторах вместо светодиодной подсветки использовали газосветные лампы с холодным катодом (CCFL, Cold Cathode Fluorescent Lamp) .

Структура дисплеев AMOLED

Теперь - несколько слов об устройстве нового и прогрессивного типа дисплеев - AMOLED (Active Matrix Organic Light-Emitting Diode ).

Устройство таких дисплеев значительно проще, так как там нет лампы подсветки.

Эти дисплеи образованы массивом светодиодов и светится там каждый пиксель в отдельности. Достоинствами дисплеев AMOLED являются "бесконечная" контрастность, отличные углы обзора и высокая энергоэффективность; а недостатками - уменьшенный срок "жизни" синих пикселей и технологические сложности изготовления больших экранов.

Также надо отметить, что, несмотря на более простую структуру, стоимость производства дисплеев AMOLED пока что выше, чем дисплеев TFT LCD.

1

Строение сенсорного экрана (тачскрина) и проблемы связанные с его заменой

Сенсорный экран — устройство ввода и вывода информации, представляющее собой экран, реагирующий на прикосновения к нему.

Резистивный сенсорный экран


Резистивный сенсорный экран состоит из стеклянной панели и гибкой пластиковой мембраны. И на панель, и на мембрану нанесено резистивное покрытие. Пространство между стеклом и мембраной заполнено микроизоляторами, которые равномерно распределены по активной области экрана и надёжно изолируют проводящие поверхности. Когда на экран нажимают, панель и мембрана замыкаются, и контроллер с помощью аналогово-цифрового преобразователя регистрирует изменение сопротивления и преобразует его в координаты прикосновения (X и Y).


В общих чертах алгоритм считывания таков:
1.На верхний электрод подаётся напряжение +5В, нижний заземляется. Левый с правым соединяются накоротко и проверяется напряжение на них. Это напряжение соответствует Y-координате экрана.
2.Аналогично на левый и правый электрод подаётся +5В и «земля», с верхнего и нижнего считывается X-координата.

Ёмкостные сенсорные экраны

Ёмкостный (или поверхностно-ёмкостный) экран использует тот факт, что предмет большой ёмкости проводит переменный ток.

Ёмкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом (обычно применяется сплав оксида индия и оксида олова). Электроды, расположенные по углам экрана, подают на проводящий слой небольшое переменное напряжение (одинаковое для всех углов). При касании экрана пальцем или другим проводящим предметом появляется утечка тока. При этом чем ближе палец к электроду, тем меньше сопротивление экрана, а значит, сила тока больше. Ток во всех четырёх углах регистрируется датчиками и передаётся в контроллер, вычисляющий координаты точки касания.

В более ранних моделях ёмкостных экранов применялся постоянный ток — это упрощало конструкцию, но при плохом контакте пользователя с землёй приводило к сбоям.
Ёмкостные сенсорные экраны надёжны, порядка 200 млн нажатий (около 6 с половиной лет нажатий с промежутком в одну секунду), не пропускают жидкости и отлично терпят не проводящие загрязнения. Прозрачность на уровне 90 %. Впрочем, проводящее покрытие всё ещё уязвимо. Поэтому ёмкостные экраны широко применяются в автоматах, установленных в охраняемом помещении. Не реагируют на руку в перчатке.

Мультитач (англ. multi-touch) — функция сенсорных систем ввода, осуществляющая одновременное определение координат двух и более точек касания. Мультитач может применяться, например, для изменения масштаба изображения: при увеличении расстояния между точками касания происходит увеличение изображения. Кроме того, мультитач-экраны позволяют работать с устройством одновременно нескольким пользователям. Они часто используются для осуществления других, более простых функций сенсорных дисплеев, таких как single touch или квази мультитач.
Мультитач позволяет не просто определить взаимное расположение нескольких точек касания в каждый момент времени, он определяет пару координат для каждой точки касания, независимо от их положения относительно друг друга и границ сенсорной панели. Правильное распознавание всех точек касания увеличивает возможности интерфейса сенсорной системы ввода. Круг решаемых задач при использовании функции мультитач зависит от скорости, эффективности и интуитивности её применения.

Наиболее распространённые мультитач-жесты

Сдвинуть пальцы — мельче
Раздвинуть пальцы — крупнее
Двигать несколькими пальцами — прокрутка
Поворот двумя пальцами — поворот объекта/изображения/видео

Проблемы, связанные с установкой резистивного сенсорного экрана

Иногда нет под рукой полного аналога нужного тача, или распиновка шлейфа другая, могут возникнуть следующие проблемы:
1.Тач повёрнут на 90,270 градусов
- Поменять местами X-Y



2.Перевёрнут тач по горизонтали
- Поменять местами X+ , X-


3.Перевёрнуть тач вверх ногами
- Поменять местами Y+ , Y-


Данные решения нужно осуществлять если после калибровки сенсорного экрана проблема не пропала.

Замена сенсорного экрана не помогла.
- Перепрошить телефон

Сопротивление на контактах ТАЧСКРИНА
Y-,Y+=550 Om Без нажатия
X-,X+=350 Om Без нажатия

Y+,X+=от 0,5-до 1,35 kOm Замеры производились в разных углах тачскрина при нажатии.Не косаясь тачскрина сопротивление равно бесконечности.
Y-,X-=от 1,35-до 0,5 kOm Замеры производились в разных углах тачскрина при нажатии.Не косаясь тачскрина сопротивление равно бесконечности.

В разных моделях сенсорных экранов сопротивление может колебаться. Данные замеры производились на сенсорном экране с телефона I9+++.

Когда пора менять сенсорный экран?

Сенсорный экран пора менять в следующих случаях:
- если он не реагирует на прикосновения
- вы обнаружили на нём "маслянистое пятно"(разноцверные разводы)
- невозможно откалибровать сенсорный экран
- войдя в сообщение и выбрав режим ввода английского текста,попробуйте поставить точки по всей площади,если вместо точек появляються чёрточки то пора менять
- войдя в сервис-разное-Touch Screen ,попробуйте поставить точки по всей площади,если вместо крестиков появляються зелёные полоски - пора менять
- если пытаясь нажать на иконку- перелистываються рабочие столы или иконки опадают(вертикальное осыпание иконок в айфоноподобных телефонах)
- если через 5 минут после калибровки вы опять не попадаете по иконке на которую нажимаете



Перед тем как рассмотреть емкостной или резистивный экран, требуется определиться с тем, что собой представляет сенсорная технология вообще. Тут все понятно: это экран, который определяет координаты нажатия. Если выражаться научно, то тут подразумевается метод управления интерфейсом, с помощью которого пользователь может нажимать непосредственно на интересующее место. На данный момент существует несколько методов реализации сенсорных экранов. Стоит рассмотреть каждый по отдельности.

Резистивная технология

Чтобы определиться, какой тип экрана, емкостный или резистивный, вам больше подходит, необходимо рассмотреть их. Второй вариант предполагает использование определенной производственной технологии. Снизу размещена панель из стекла, поверх которой находится прозрачная гибкая мембрана. На панели и мембране присутствует токопроводящее покрытие, то есть резистивное. При нажатии на экран происходит замыкание в определенной точке. Если знать напряжение на электродах с одной стороны и измерить его же на мембране, то получается отследить одну координату. Две координаты потребуют отключить одну группу электродов, чтобы включить другую. Это все в автоматическом режиме делает микропроцессор, как только происходит изменение напряжения на мембране. Резистивные экраны не позволяют реализовать мультитач.

Особенности резистивной технологии

Как и у любого другого типа реализованных устройств, тут имеются определенные черты, которые являются положительными или отрицательными в зависимости от ситуации. В качестве преимуществ обычно отмечается дешевое производство, а также возможность нажимать чем угодно, так как требуется только продавить мембрану. Точность позиционирования повышается за счет применения стилусов.

Негативные моменты

Основными недостатками можно назвать низкую степень пропускания света, высокую скорость появления царапин на поверхности, возможность нажатий в одну точку не более 35 миллионов раз, невозможность реализовать мультитач. Если вы не можете решить, емкостной или резистивный экран выбрать, то важно отметить еще и невозможность использования жестов типа скольжения, так как требуется нажать пальцем на экран и вести его не отпуская. В устройствах с такими элементами управления лучше использовать софт, требующий минимального использования «листающих» жестов.

Разбираясь в особенностях этой технологии, стоит отметить, что она может быть реализована несколькими способами, имеющими определенные различия. Емкостный сенсорный экран может быть просто емкостным и проекционно-емкостным. Первый вариант предполагает использование определенных элементов. Поверх стеклянной панели размещается прозрачный резистивный материал, например, сплав оксида олова или индия. По углам размещены электроды, которые подают небольшое переменное напряжение на проводящий слой. Если к экрану прикасаются токопроводящим предметом, то возникает утечка, и чем этот предмет ближе к электроду, тем ниже сопротивление экрана, то есть сила тока заметно увеличивается. А называется это все емкостной экран, так как переменный ток проводится предметом большей емкости. Чаще всего речь идет о пальце.

Особенности емкостных экранов

Как и прочие виды технологий, в данном случае речь идет о совокупности достоинств и недостатков. В качестве преимуществ перед остальными можно назвать высокую светопропускающую способность, значительный ресурс нажатий, простоту и удобство работы методом «листания». Недостатки здесь тоже имеются: требуется использовать только пальцы либо специализированные стилусы. Обычный емкостной экран не поддерживает технологию мультитач. Часто бывают случайные нажатия. К примеру, система может распознавать жест как «листание» даже в том случае, когда он не предполагается, так как сложно удержать палец строго на одном месте после нажатия.

Проекционно-емкостной сенсорный экран

В данном случае устройство отличается от предыдущих довольно сильно. Внутренняя сторона экрана представляет собой сетку электродов. Если происходит прикосновение предметом большей емкости к электроду, то образуется конденсатор, обладающий постоянной емкостью. Такие экраны используются на улице, так как позволяют устанавливать стекло, толщина которого достигает 18 мм, при этом удается получить не только максимально твердую поверхность, но и обеспечить вандалоустойчивость.

Особенности проекционно-емкостных сенсоров

В данном случае, как и во всех остальных, имеются определенные преимущества и недостатки, о которых следует знать. В качестве достоинств можно назвать возможность реализации мультитач, реагирование на нажатие в перчатке, высокую степень пропускания света, а также долговечность самого экрана. Такие экраны способны реагировать на приближение пальцев без факта нажатия. Порог, когда происходит завершение касания, обычно настраивается программно. Крайняя точка - это обычно сам экран, так как продавливать его совершенно бесполезно.

Если рассматривать проекционно-емкостной экран, то он обладает и определенными недостатками, в качестве которых принято называть сложную и довольно дорогую электронику, невозможность использования обычного стилуса, вероятность случайных нажатий.

Мультитач технология

Невозможно определить подходящий тип сенсорного экрана, емкостный или резистивный, не решив вопрос, касающийся реализации данной технологии. Мультитач - это возможность множественных касаний. Настоящая реализация предполагает отслеживание координат нескольких нажатий одновременно. Если в смартфоне или планшете реализована такая технология, то с его помощью можно имитировать игру на музыкальном инструменте, к примеру, гитаре. Следует разобраться с этим подробнее.

Можно взять обычный емкостный или резистивный экран. Если нажать сначала, например, в левый верхний угол, а потом, не отрывая палец, другим нажать в правый нижний, то электроникой в качестве координат будет определен центр экрана, то есть середина отрезка между парой этих касаний. Это будет видно, если запустить специальное приложение, отслеживающее координаты нажатия. Однако встает вопрос о том, а как же реализовано масштабирование картинок, если все равно распознается только одно нажатие?

Тут все просто. Это самый обычный программный трюк. Вы нажали на емкостной экран - электроника это определила. Это будет точка «А». Теперь, не отпуская пальца, вы нажимаете в другое место, которое будет точкой «В», получается, что в этот момент точка нажатия переместилась мгновенно в сторону, образовав «С». Именно в этот момент, когда фактически отпускания пальца не было, а точка нажатия мгновенно переместилась, программно обрабатывается в качестве мультитача. Далее, если точка «С» становится ближе к «А», то определяется сдвигание пальцев, то есть в случае с изображением, картинку надо уменьшить, и наоборот. Еще один момент: если точка «С» описывает дугу вокруг одной из точек, то программа определяет это как вращение одного пальца вокруг другого, что вызывает необходимость поворота картинки в соответствующую сторону.

Использование резистивного и емкостного экранов

Профессиональными разработчиками традиционно используется первый тип, так как он позволяет управлять любым предметом при различных погодных условиях. При реализации резистивной технологии используется большее количество датчиков на квадратный сантиметр в сравнении с емкостной, поэтому на дисплее можно отображать мельчайшие значки, на которые допускается нажимать иглой. К примеру, операционная система Windows Mobile разрабатывалась с учетом такой особенности, поэтому хорошо работает с резистивными экранами. Такие дисплеи почти нечувствительны к случайным нажатиям. Однако многие разработчики сейчас нацелены создавать приложения, ориентированные на емкостный сенсорный экран. Это уже становится проблемой для устройств, выполненных с применением резистивной технологии.

Степень защищенности

Важно понимать, что для планшетных компьютеров и коммуникаторов дисплей является самой уязвимой частью. Емкостной экран является более предпочтительным вариантом в плане надежности. Его производительность в любых условиях заметно выше, а резистивные модели могут отказать, к примеру, если нести их вниз стеклом. Емкостный экран - это отказоустойчивый вариант. Даже если он сломан, то и дальше будет исполнять свои функции. Если решать, емкостный или резистивный экран выбрать, то стоит отметить, что в полевых условиях первый будет оптимальным вариантом.

Выводы

Если подводить итоги, то можно отметить, что оба варианта реализации дисплеев имеют свои преимущества и недостатки. При том что емкостный экран - это целая совокупность возможностей, резистивный ориентирован на использование в определенных ситуациях. Обычно все зависит от интерфейса, используемого в гаджете. удобен в использовании, площадь его нажатия заметно меньше, чем у пальца, однако при хорошей отзывчивости поверхности удобно обходиться и без этого приспособления. Постоянное совершенствование резистивных дисплеев привело к тому, что появились модели вполне твердые, то есть стойкие к формированию царапин, но при этом и отзывчивые. Такие варианты стали весьма удобны в эксплуатации.

Необходимость использовать специальный стилус для емкостных экранов иногда доставляет немалое неудобство, так как он обычно не идет в комплекте с устройством. А резистивная технология предполагает и сопровождение специальным приспособлением, и возможность нажатия любым твердым предметом. Одна из причин, по которой многие выбирают емкостный сенсорный экран - мультитач, однако стоит отметить, что чаще всего это программная реализация, как уже было описано, и при должном подходе она может быть применена и для резистивного. Проекционно-емкостная технология пока еще не стала настолько доступной, как этого хотелось бы.

Нечасто мы задумываемся о том, как работает дисплей устройства лежащего у нас в руках. Но иногда бывают случаи, когда недавно купленный телефон или планшет отказывается реагировать на привычное цифровое перо от старого девайса. В этом случае, становится очевидным, что экран новинки собран по какой-то другой технологии. Тут уже вспоминается, что есть резистивные экраны и емкостные, последние из которых постепенно вытесняют первых.

Стоит заметить, что мало кто знает о различии между поверхностно- и проекционно-емкостными дисплеями. А ведь экраны почти всех современных планшетов, смартфонов с Android или iOS от Apple относятся именно к проекционно-емкостным, благодаря которым и возможна такая уже необходимая функция, как мультитач.

Поверхностно-емкостные экраны

Все емкостные скрины при работе используют тот факт, что все предметы, обладающие электрической емкостью, тело человека в том числе, хорошо проводят переменный ток.

Первые экземпляры емкостных тач-скринов работали на постоянном токе, что упрощало устройство электроники, аналого-цифрового преобразователя в частности, но загрязненность экрана или рук часто приводила к сбоям. Для постоянного тока даже ничтожное емкостное сопротивление является непреодолимой преградой.

Емкостные экраны так же, как и резистивные собраны в простейшем случае из LCD или AMOLED экрана, дающего изображение в самом низу и сенсорной активной панели поверху .

Активная часть поверхностно-емкостных экранов представляет собой кусок стекла, покрытый на одной стороне прозрачным, с высоким сопротивлением материалом. В качестве этого электропроводящего вещества применяется оксид индия или оксид олова.

По углам экрана расположены четыре электрода, через которые подается небольшое переменное напряжение, одинаковое со всех сторон. При касании поверхности экрана электропроводящим предметом или напрямую пальцем появляется утечка тока через тело человека. Протекание ничтожно малых токов регистрируется одновременно во всех четырех углах датчиками, а микропроцессор по разности величин токов определяет координаты места касания.

Поверхностно-емкостной экран всё ещё хрупок, так как его проводящее покрытие нанесено на внешнюю поверхность и ничем не защищено. Но не такой нежный, как резистивный, поскольку на его поверхности нет тонкой мягкой мембраны. Отсутствие мембраны улучшает прозрачность дисплея, и позволяет применять менее яркую и энергоэкономную подсветку.

Проекционно-ёмкостные экраны

Этот тип сенсорного экрана способен определять одновременно координаты двух и более точек прикосновения, то есть поддерживает функцию мультитач. Именно этого типа дисплеи устанавливаются на все современные мобильные устройства.

Работают они по схожему с поверхностно-емкостными экранами принципу, отличие заключается в том, что активный проводящий слой у них нанесен внутри, а не на внешней поверхности. Благодаря чему активная панель получается значительно более защищенной. Можно закрыть её стеклом толщиной вплоть до 18 мм, таким образом, сделав сенсорный экран крайне вандалоустойчивым.

При прикосновении к сенсорному экрану, между пальцем человека и одним из электродов за стеклом образуется небольшая ёмкость. Микроконтроллер прощупывает импульсным током, в каком именно месте на сетке электродов возросло напряжение из-за внезапно образовавшейся ёмкости. На стекающие капли воды экран не реагирует, так как такие проводящие помехи легко подавляются программным методом.

Общим недостатком для всех емкостных экранов является невозможность работать с ними любыми изолирующими предметами. Можно только специальным стилусом или голым пальцем. На удобное пластмассовое перо или руку в теплой перчатке они не среагируют.

Травление печатных плат Самодельный миниатюрный низковольтный паяльник Хитрый способ распайки плат